Comparison and integration of simulation models for horizontal connection pipes in geothermal bore fields

Author:

Düber StephanORCID,Fuentes Raul,Narsilio Guillermo A.

Abstract

AbstractThe heat transfer along horizontal connection pipes in geothermal bore fields can have significant effects and should not be neglected. As practical and design-related applications require simple and efficient models, we investigate suitability of different models for the first time within this context. Three ground and three pipe models of different complexity are studied. All model combinations are coupled with a fixed ground load boundary condition on one side and a borehole heat exchanger (BHE) model on the other side. Models are tested under a variety of realistic conditions to evaluate performance. The investigations show that all investigated pipe models are equally suitable for the application. For the ground models, the horizontal finite line source model and the numerical 2D model produce identical results for homogeneous ground properties. The soil resistance model neglects the temperature accumulation in the ground and thus leads to considerable deviations and should be avoided. Based on the findings, we propose a computationally efficient approach using a novel combination of established simple steady-state models for the BHE and connection pipes. In the selected example scenario, the consideration of a 30 m connection pipe attached to the BHE leads to an increase in the BHE load by 40% for the heating case and a reduction in the BHE load by 5% for the cooling case.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3