The deeper the better? A thermogeological analysis of medium-deep borehole heat exchangers in low-enthalpy crystalline rocks

Author:

Piipponen KaiuORCID,Martinkauppi Annu,Korhonen Kimmo,Vallin Sami,Arola Teppo,Bischoff Alan,Leppäharju Nina

Abstract

AbstractThe energy sector is undergoing a fundamental transformation, with a significant investment in low-carbon technologies to replace fossil-based systems. In densely populated urban areas, deep boreholes offer an alternative over shallow geothermal systems, which demand extensive surface areas to attain large-scale heat production. This paper presents numerical calculations of the thermal energy that can be extracted from the medium-deep borehole heat exchangers in the low-enthalpy geothermal setting at depths ranging from 600 to 3000 m. We applied the thermogeological parameters of three locations across Finland and tested two types of coaxial borehole heat exchangers to understand better the variables that affect heat production in low-permeability crystalline rocks. For each depth, location, and heat collector type, we used a range of fluid flow rates to examine the correlation between thermal energy production and resulting outlet temperature. Our results indicate a trade-off between thermal energy production and outlet fluid temperature depending on the fluid flow rate, and that the vacuum-insulated tubing outperforms a high-density polyethylene pipe in energy and temperature production. In addition, the results suggest that the local thermogeological factors impact heat production. Maximum energy production from a 600-m-deep well achieved 170 MWh/a, increasing to 330 MWh/a from a 1000-m-deep well, 980 MWh/a from a 2-km-deep well, and up to 1880 MWh/a from a 3-km-deep well. We demonstrate that understanding the interplay of the local geology, heat exchanger materials, and fluid circulation rates is necessary to maximize the potential of medium-deep geothermal boreholes as a reliable long-term baseload energy source.

Funder

Business Finland: Smart Otaniemi subproject Smart integration of energy flexible buildings and local hybrid energy systems

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,Geotechnical Engineering and Engineering Geology,Renewable Energy, Sustainability and the Environment

Reference59 articles.

1. Aalto J, Pirinen P, Jylhä K. New gridded daily climatology of Finland: permutation-based uncertainty estimates and temporal trends in climate. J Geophys Res Atmos. 2016;121:3807–23. https://doi.org/10.1002/2015JD024651.

2. Acuña J. Distributed thermal response tests New insights on U-pipe and Coaxial heat exchangers in groundwater-filled boreholes. KTH Royal Institute of Technology. 2013.

3. Arola T, Korhonen K, Martinkauppi A, Leppäharju N, Hakala P, Ahonen L, Pashkovskii M. Creating shallow geothermal potential maps for Finland using finite element simulations and machine learning. Eur Geotherm Congr. 2019;2019:6.

4. Arola T, Wiberg M. Geothermal energy use, country update for Finland, in: European Geothermal Congress 2022. European Geothermal Congress. 2022.

5. Artemieva IM. Lithosphere structure in Europe from thermal isostasy. Earth Sci Rev. 2019;188:454–68. https://doi.org/10.1016/j.earscirev.2018.11.004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3