Development and validation of portable, field-deployable Ebola virus point-of-encounter diagnostic assay for wildlife surveillance

Author:

Figueroa Dania M.,Kuisma Eeva,Matson M. Jeremiah,Ondzie Alain U.,Bushmaker Trent,Seifert Stephanie N.,Ntoumi Francine,Escudero-Pérez Beatriz,Muñoz-Fontela César,Walzer Chris,Olson Sarah H.,Goma-Nkoua Cynthia,Mombouli Jean-Vivien,Fischer Robert J.,Munster Vincent J.ORCID

Abstract

Abstract Early detection of Ebola virus spillover into wildlife is crucial for rapid response. We developed and validated a portable, cold-chain independent Ebola virus RT-qPCR assay. Methods The field syringe-based RNA extraction method was compared with a conventional laboratory-based spin-column RNA extraction method. Next, the qPCR efficiency and limit of detection of the assay was compared to standard laboratory-based reagents and equipment. The specificity of the assay was confirmed by testing against multiple Zaire Ebolavirus (EBOV) variants and other ebolavirus species. Lastly, swabs from an EBOV-infected non-human primate carcass, stored at environmental conditions mimicking central and west Africa, were analyzed to mimic in field conditions. Results The syringe-based RNA extraction method performed comparably to a standard laboratory spin-column-based method. The developed assay was comparable in sensitivity and specificity to standard laboratory-based diagnostic assays. The assay specifically detected EBOV and not any of the other tested ebolavirus species, including Reston ebolavirus, Sudan ebolavirus, Bundibugyo ebolavirus, and Tai Forrest ebolavirus. Notably, the assays limit of detection for EBOV isolates were all below 4 genome copies/μL. The assay was able to detect EBOV in oral, nasal, thoracic cavity, and conjunctiva swabs obtained from an infected non-human primate. Conclusion We developed a field-based Ebolavirus assay which is comparable in sensitivity and specificity to laboratory-based assays. Currently, the assay is being incorporated into wildlife carcass surveillance in the Republic of the Congo and is being adapted for other infectious disease agents.

Funder

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3