Dark-light cycle disrupts bone metabolism and suppresses joint deterioration in osteoarthritic rats

Author:

Song Xiaopeng,Zhao Mingchao,Tang Jilang,Ma Tianwen,Bai Hui,Wang Xinyu,Liu Lin,Li Ting,Xu Xinyu,Sheng Xuanbo,Zhao Binger,Wang Yingying,Wang Tiantian,Guo Yingchao,Zhang Xinmin,Gao LiORCID

Abstract

Abstract Background Light alteration affects the internal environment and metabolic homeostasis of the body through circadian rhythm disorders (CRD). CRD is one of the factors that induce and accelerate osteoarthritis (OA). Therefore, the aim of this study was to evaluate the effects of continuous dark-light (DL) cycle on joint inflammation, bone structure, and metabolism in normal and OA Sprague-Dawley (SD) rats. Methods Interleukin (IL)-1β, IL-6, inducible nitric oxide synthase (iNOS), and tumor necrosis factor (TNF)-α were used to evaluate the systemic inflammation in rats. The pathological changes and inflammatory reactions of the cartilage and synovium of the knee joint in rats were evaluated by Safranin O-fast green and immunological staining. Bone turnover was assessed by histomorphometry and μCT scanning, as well as bone metabolism markers and proteins. The expression changes of clock proteins BMAL1, NR1D1, PER3, and CRY1 in representative tissues were detected by western blotting. Results DL cycle significantly inhibited body weight gain in normal and OA rats. The levels of proinflammatory factors in the peripheral blood circulation and degradation enzymes in the cartilage were significantly decreased in OA+DL rats. DL cycle significantly destroyed the structure of subchondral bone in hindlimbs of OA rats and reduced trabecular bone numbers. The decrease of bone mineral density (BMD), percent bone volume with respect to total bone volume (BV/TV), trabecular number (TB.N), osteoclast number, and mineralization could also be found. The ratio of the receptor activator of nuclear factor-kappa B ligand/osteoprotegerin (RANKL/OPG) in the bone marrow of OA rats was markedly increased under DL, along with the activation of the mononuclear/phagocyte system. The expression of representative clock proteins and genes BMAL1, PER3, and CRY1 were markedly changed in the tissues of OA+DL rats. Conclusions These results suggested that DL cycle dampened the arthritis and promoted bone resorption and bone mass loss. Graphical abstract DL cycle affects bone turnover by regulating osteoclast production in osteoarthritic rats.

Funder

The National Key Research and Development Program of China

Applied Technology Research and Development Plan of Heilongjiang, China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3