Early identification of macrophage activation syndrome secondary to systemic lupus erythematosus with machine learning

Author:

Lin Wenxun,Xie Xi,Luo Zhijun,Chen Xiaoqi,Cao Heng,Fang Xun,Song You,Yuan Xujing,Liu Xiaojing,Du Rong

Abstract

Abstract Objective The macrophage activation syndrome (MAS) secondary to systemic lupus erythematosus (SLE) is a severe and life-threatening complication. Early diagnosis of MAS is particularly challenging. In this study, machine learning models and diagnostic scoring card were developed to aid in clinical decision-making using clinical characteristics. Methods We retrospectively collected clinical data from 188 patients with either SLE or the MAS secondary to SLE. 13 significant clinical predictor variables were filtered out using the Least Absolute Shrinkage and Selection Operator (LASSO). These variables were subsequently utilized as inputs in five machine learning models. The performance of the models was evaluated using the area under the receiver operating characteristic curve (ROC-AUC), F1 score, and F2 score. To enhance clinical usability, we developed a diagnostic scoring card based on logistic regression (LR) analysis and Chi-Square binning, establishing probability thresholds and stratification for the card. Additionally, this study collected data from four other domestic hospitals for external validation. Results Among all the machine learning models, the LR model demonstrates the highest level of performance in internal validation, achieving a ROC-AUC of 0.998, an F1 score of 0.96, and an F2 score of 0.952. The score card we constructed identifies the probability threshold at a score of 49, achieving a ROC-AUC of 0.994 and an F2 score of 0.936. The score results were categorized into five groups based on diagnostic probability: extremely low (below 5%), low (5–25%), normal (25–75%), high (75–95%), and extremely high (above 95%). During external validation, the performance evaluation revealed that the Support Vector Machine (SVM) model outperformed other models with an AUC value of 0.947, and the scorecard model has an AUC of 0.915. Additionally, we have established an online assessment system for early identification of MAS secondary to SLE. Conclusion Machine learning models can significantly improve the diagnostic accuracy of MAS secondary to SLE, and the diagnostic scorecard model can facilitate personalized probabilistic predictions of disease occurrence in clinical environments.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3