Abstract
Abstract
Background
We performed expression quantitative trait locus (eQTL) analysis in single classical (CL) and non-classical (NCL) monocytes from patients with systemic lupus erythematosus (SLE) to quantify the impact of well-established genetic risk alleles on transcription at single-cell resolution.
Methods
Single-cell gene expression was quantified using qPCR in purified monocyte subpopulations (CD14++CD16− CL and CD14dimCD16+ NCL) from SLE patients. Novel analysis methods were used to control for the within-person correlations observed, and eQTLs were compared between cell types and risk alleles.
Results
The SLE-risk alleles demonstrated significantly more eQTLs in NCLs as compared to CLs (p = 0.0004). There were 18 eQTLs exclusive to NCL cells, 5 eQTLs exclusive to CL cells, and only one shared eQTL, supporting large differences in the impact of the risk alleles between these monocyte subsets. The SPP1 and TNFAIP3 loci were associated with the greatest number of transcripts. Patterns of shared influence in which different SNPs impacted the same transcript also differed between monocyte subsets, with greater evidence for synergy in NCL cells. IRF1 expression demonstrated an on/off pattern, in which expression was zero in all of the monocytes studied from some individuals, and this pattern was associated with a number of SLE risk alleles. We observed corroborating evidence of this IRF1 expression pattern in public data sets.
Conclusions
We document multiple SLE-risk allele eQTLs in single monocytes which differ greatly between CL and NCL subsets. These data support the importance of the SPP1 and TNFAIP3 risk variants and the IRF1 transcript in SLE patient monocyte function.
Funder
National Institutes of Health
Colton Center for Autoimmunity
Lupus Research Alliance
Lupus Research Foundation
U.S. Army
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献