Glutathione peroxidase 3 is a novel clinical diagnostic biomarker and potential therapeutic target for neutrophils in rheumatoid arthritis

Author:

Chen Tao,Zhou Zhen,Peng Minge,Hu Huifang,Sun Rui,Xu Jiayi,Zhu Chenxi,Li Yanhong,Zhang Qiuping,Luo Yubin,Yang Bin,Dai Lunzhi,Liu Yi,Muñoz Luis E.,Meng Liesu,Herrmann Martin,Zhao Yi

Abstract

Abstract Background Neutrophils have a critical role in the pathogenesis of rheumatoid arthritis (RA) with immune system dysfunction. However, the molecular mechanisms of this process mediated by neutrophils still remain elusive. The purpose of the present study is to identify hub genes in neutrophils for diagnosis and treatment of RA utilizing publicly available datasets. Methods Gene expression profiles were downloaded from the Gene Expression Omnibus, and batch-corrected and normalized expression data were obtained using the ComBat package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to conduct significantly functional analysis and crucial pathways. The resulting co-expression genes modules and hub genes were generated based on the weighted gene co-expression network analysis and visualization by Cytoscape. Flow cytometry was conducted to detect reactive oxygen species (ROS) levels in neutrophils. Results Neutrophils underwent transcriptional changes in synovial fluid (SF) of RA patients, different from peripheral blood of healthy controls or patients with RA. Especially, glycolysis, HIF-1 signaling, NADH metabolism, and oxidative stress were affected. These hub genes were strongly linked with classical glycolysis-related genes (ENO1, GAPDH, and PKM) responsible for ROS production. The antioxidant enzyme glutathione peroxidase 3 (GPX3), a ROS scavenger, was first identified as a hub gene in RA neutrophils. Neutrophils from patients with autoinflammatory and autoimmune diseases had markedly enhanced ROS levels, most notably in RA SF. Conclusion This research recognized hub genes and explored the characteristics of neutrophils in RA. Our findings suggest that the novel hub gene GPX3 is involved in the neutrophil-driven oxidative stress-mediated pathogenesis of RA. It has the potency to be a target for neutrophil-directed RA therapy.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3