Author:
Koo Bon San,Eun Seongho,Shin Kichul,Hong Seokchan,Kim Yong-Gil,Lee Chang-Keun,Yoo Bin,Oh Ji Seon
Abstract
Abstract
Background
The purpose of this study was to stratify patients with rheumatoid arthritis (RA) according to the trend of disease activity by trajectory-based clustering and to identify contributing factors for treatment response to biologic and targeted synthetic disease-modifying anti-rheumatic drugs (DMARDs) according to trajectory groups.
Methods
We analyzed the data from a nationwide RA cohort from the Korean College of Rheumatology Biologics and Targeted Therapy registry. Patients treated with second-line biologic and targeted synthetic DMARDs were included. Trajectory modeling for clustering was used to group the disease activity trend. The contributing factors using the machine learning model of SHAP (SHapley Additive exPlanations) values for each trajectory were investigated.
Results
The trends in the disease activity of 688 RA patients were clustered into 4 groups: rapid decrease and stable disease activity (group 1, n = 319), rapid decrease followed by an increase (group 2, n = 36), slow and continued decrease (group 3, n = 290), and no decrease in disease activity (group 4, n = 43). SHAP plots indicated that the most important features of group 2 compared to group 1 were the baseline erythrocyte sedimentation rate (ESR), prednisolone dose, and disease activity score with 28-joint assessment (DAS28) (SHAP value 0.308, 0.157, and 0.103, respectively). The most important features of group 3 compared to group 1 were the baseline ESR, DAS28, and estimated glomerular filtration rate (eGFR) (SHAP value 0.175, 0.164, 0.042, respectively). The most important features of group 4 compared to group 1 were the baseline DAS28, ESR, and blood urea nitrogen (BUN) (SHAP value 0.387, 0.153, 0.144, respectively).
Conclusions
The trajectory-based approach was useful for clustering the treatment response of biologic and targeted synthetic DMARDs in patients with RA. In addition, baseline DAS28, ESR, prednisolone dose, eGFR, and BUN were important contributing factors for 4-year trajectories.
Funder
National Research Foundation of Korea
Asan Institute for Life Sciences, Asan Medical Center
Ministry of Trade, Industry and Energy
Korea Health Industry Development Institute
Publisher
Springer Science and Business Media LLC