Alternatively activated macrophages are associated with the α2AP production that occurs with the development of dermal fibrosis

Author:

Kanno Yosuke,Shu En,Niwa Hirofumi,Kanoh Hiroyuki,Seishima Mariko

Abstract

Abstract Background Fibrotic diseases are characterized by tissue overgrowth, hardening, and/or scarring because of the excessive production, deposition, and contraction of the extracellular matrix (ECM). However, the detailed mechanisms underlying these disorders remain unclear. It was recently reported that α2-antiplasmin (α2AP) is elevated in fibrotic tissue and that it is associated with the development of fibrosis. In the present study, we examined the mechanism underlying the production of α2AP on the development of fibrosis. Methods To clarify the mechanism underlying the production of α2AP on the development of fibrosis, we focused on high-mobility group box 1 (HMGB1), which is associated with the development of fibrosis. The mouse model of bleomycin-induced fibrosis was used to evaluate the production of α2AP on the development of fibrosis. Results We found that HMGB1 induced the production of α2AP through receptor for advanced glycation end products (RAGE) in fibroblasts. Next, we showed that macrophage reduction by a macrophage-depleting agent, clodronate, attenuated the progression of fibrosis and the production of α2AP and HMGB1 in the bleomycin-induced mice. We also showed that IL-4-stimulated alternatively activated macrophages induced the production of HMGB1, that IL-4-stimulated alternatively activated macrophage conditioned media (CM) induced pro-fibrotic changes and α2AP production, and that the inhibition of HMGB1 and RAGE attenuated these effects in fibroblasts. Furthermore, the blockade of IL-4 signaling by IL-4Rα neutralizing antibodies attenuated the progression of fibrosis and the production of α2AP and HMGB1 in the bleomycin-induced mice. Conclusion These findings suggest that alternatively activated macrophage-derived HMGB1 induced the production of α2AP through RAGE and that these effects are associated with the development of fibrosis. Our findings may provide a clinical strategy for managing fibrotic disorders.

Funder

Takeda Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3