Epigenetic modification of miR-217 promotes intervertebral disc degeneration by targeting the FBXO21-ERK signalling pathway

Author:

Chen Zhonghui,Ming Jianghua,Liu Yajing,Hu Geliang,Liao Qi

Abstract

Abstract Background Numerous potential therapeutic alternatives for intervertebral disc degeneration (IDD) have been investigated, the most promising of which are based on biological variables such as microRNAs (miRNAs). Therefore, we verified the hypothesis that miRNAs modulate IDD by affecting the FBXO21-ERK signalling pathway. Methods Microarray and quantitative real-time polymerase chain reaction (RT–qPCR) tests were used to examine the expression profiles of miRNAs in nucleus pulposus (NP) cells between patients with IDD and controls. Western blotting and luciferase reporter assays were used to identify the miRNA targets. Results Microarray and RT–qPCR assays confirmed that the expression level of miR-217 was significantly decreased in degenerative NP cells. CpG islands were predicted in the miR-217 promoter region. The IDD group had considerably higher methylation than the control group. Gain- and loss-of-function experiments revealed that miR-217 mimics inhibited apoptosis and extracellular matrix (ECM) breakdown in NP cells. Bioinformatic analyses and luciferase assays were used to determine the connection between miR-217 and FBXO21. In vitro tests revealed that miR-217 mimics inhibited the expression of FBXO21, pERK, MMP13, and ADAMTS5 proteins, successfully protecting the ECM from degradation. Additionally, in vivo investigation using the IDD mouse model demonstrated that the miR-217 agonist may sufficiently promote NP cell proliferation, decrease apoptosis, promote ECM synthesis, and suppress the expression of matrix-degrading enzymes in NP cells. Conclusions Overexpression of miR-217 inhibits IDD via FBXO21/ERK regulation. Trial registration This study was performed in strict accordance with the NIH guidelines for the care and use of laboratory animals (NIH Publication No. 85-23 Rev. 1985) and was approved by the human research ethics committee of Wuhan University Renmin Hospital (Approval No. RMHREC-D-2020-391), and written informed consent was obtained from each participant.

Funder

Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopaedic Trauma

Fundamental Research Funds for the Central Universities of Wuhan University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3