Characterization and use of the ECV304 autoantigenic citrullinome to understand anti-citrullinated protein/peptide autoantibodies in rheumatoid arthritis

Author:

de França Natalia Regine,Ménard Henri André,Lora Maximilien,Zhou Zhijie,Rauch Joyce,Hitchon Carol,Andrade Luís Eduardo Coelho,Colmegna Inés

Abstract

Abstract Background Anti-citrullinated protein antibodies (ACPAs) are highly specific for rheumatoid arthritis (RA). In vivo, ACPAs target peptidyl-citrulline epitopes (cit-) in a variety of proteins (cit-prot-ACPAs) and derived peptides (cit-pept-ACPAs) generated via the peptidylarginine deiminase (PAD) isoenzymes. We aimed to identify a cell line with self-citrullination capacity, to describe its autoantigenic citrullinome, and to test it as a source of autocitrullinated proteins and peptides. Methods Human cell lines were screened for cit-proteins by Western blot. PAD isoenzymes were identified by RT-PCR. Autocitrullination of ECV304 was optimized, and the ECV304 autocitrullinomes immunoprecipitated by sera from three RA patients were characterized by mass spectrometry. Cit-pept-ACPAs were detected using anti-CCP2 ELISA and cit-prot-ACPAs, by an auto-cit-prot-ECV304 ELISA. Sera from 177 RA patients, 59 non-RA rheumatic disease patients and 25 non-disease controls were tested. Results Of the seven cell lines studied, only ECV304 simultaneously overexpressed PAD2 and PAD3 and its extracts reproducibly autocitrullinated self and non-self-proteins. Proteomic analysis of the cit-ECV304 products immunoprecipitated by RA sera, identified novel cit-targets: calreticulin, profilin 1, vinculin, new 14–3-3 protein family members, chaperones, and mitochondrial enzymes. The auto-cit-prot-ECV304 ELISA had a sensitivity of 50% and a specificity of 95% for RA diagnosis. Conclusions ECV304 cells overexpress two of the PAD isoenzymes capable of citrullinating self-proteins. These autocitrullinated cells constitute a basic and clinical research tool that enable the detection of cit-prot-ACPAs with high diagnostic specificity and allow the identification of the specific cit-proteins targeted by individual RA sera.

Funder

Institute of Musculoskeletal Health and Arthritis

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Peptidylarginine deiminase (PAD): A promising target for chronic diseases treatment;International Journal of Biological Macromolecules;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3