Abstract
Abstract
Background
Due to the lack of research on the pathological mechanism of temporomandibular joint osteoarthritis (TMJOA), there are few effective treatment measures in the clinic. In recent years, microRNAs (miRs) have been demonstrated to play an important role in the pathogenesis of osteoarthritis (OA) by regulating a variety of target genes, and the latest evidence shows that miR-21-5p is specifically overexpressed in OA. The purpose of this project was to clarify whether miR-21-5p can regulate the TMJOA process by targeting Spry1.
Methods
TMJOA was induced by a unilateral anterior crossbite (UAC) model, and the effect of miR-21-5p knockout on TMJOA was evaluated by toluidine blue (TB), immunohistochemical (IHC) staining, Western blotting (WB) and RT-qPCR. Primary mouse condylar chondrocytes (MCCs) were isolated, cultured and transfected with a series of mimics, inhibitors, siRNA-Spry1 or cDNA Spry1. WB, RT-qPCR, IHC and TB were used to detect the effect of miR-21-5p and its target gene Spry1 on the expression of MMP-13, VEGF and p-ERK1/2 in TMJOA. The effect of miR-21-5p on angiogenesis was evaluated by chick embryo chorioallantoic membrane (CAM) assay and WB.
Results
In the UAC model, the cartilage thickness and extracellular matrix of miR-21-5p knockout mice were less damaged, and miR-21-5p and UAC model were shown to affect the expression of Spry1, IL-1β, MMP-13, and VEGF. Luciferase experiments confirmed that Spry1 was the direct target of miR-21-5p. The expression levels of Spry1, MMP-13, VEGF and p-ERK1/2 in MCCs transfected with miR-21-5p mimic were higher than those in the inhibitor group. Under the simulated inflammatory environment of IL-1β, the expression levels of MMP-13, VEGF and p-ERK1/2 were positively correlated with miR-21-5p, while Spry1 was negatively correlated with miR-21-5p. Inhibition of miR-21-5p expression and overexpression of Spry1 enhanced the inhibition of MMP-13, VEGF and p-ERK1/2 expression. MiR-21-5p had a significant role in promoting angiogenesis in the chick embryo CAM assay, and this role was clearly mediated by the ERK-MAPK signalling pathway.
Conclusion
This study verified that miR-21-5p can promote the process of TMJOA by targeting Spry1, which provides a new direction for future research on the treatment of this disease.
Funder
National Natural Science Foundation of China
Taishan Scholar Foundation of Shandong Province
Postdoctoral Research Foundation of China
The Fundamental Research Funds of Shandong University
The Science and Technology Development Plans of Shandong province
Natural Science Foundation of Shandong Province
Publisher
Springer Science and Business Media LLC
Reference39 articles.
1. Tanaka E, Detamore MS, Mercuri LG. Degenerative disorders of the temporomandibular joint: etiology, diagnosis, and treatment. J Dent Res. 2008;87(4):296–307.
2. Li K, Zhang Y, Zhang Y, Jiang W, Shen J, Xu S, Cai D, Shen J, Huang B, Li M, et al. Tyrosine kinase Fyn promotes osteoarthritis by activating the beta-catenin pathway. Ann Rheum Dis. 2018;77(6):935–43.
3. Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol. 2012;8(9):543–52.
4. Walsh DA, Haywood L. Angiogenesis: a therapeutic target in arthritis. Curr opin Investig Drugs (London, England : 2000). 2001;2(8):1054–63.
5. Shen P, Jiao Z, Zheng JS, Xu WF, Zhang SY, Qin A, Yang C. Injecting vascular endothelial growth factor into the temporomandibular joint induces osteoarthritis in mice. Sci Rep. 2015;5:16244.