Integrative metabolomics of plasma and PBMCs identifies distinctive metabolic signatures in Behçet’s disease

Author:

Park Soo Jin,Park Mi Jin,Park Sun,Lee Eun-So,Lee Do Yup

Abstract

Abstract Background Behçet’s disease (BD) is a systemic inflammatory disease that involves various organs. The clinical manifestation-based diagnosis of BD is a time-consuming process, which makes it difficult to distinguish from patients with similar symptoms. Moreover, an authentic biomarker has not been developed for accurate diagnosis yet. Our current study investigated the unique metabolic signatures of BD and explored biomarkers for precise diagnosis based on an untargeted metabolomic approach. Methods Integrative metabolomic and lipidomic profiling was performed on plasma samples of BD patients (n = 40), healthy controls (HCs, n = 18), and disease controls (DCs, n = 17) using GC-TOF MS and LC-Orbitrap MS. Additionally, the lipid profiles of 66 peripheral blood mononuclear cells (PBMCs) were analyzed from 29 BD patients, 18 HCs, and 19 DCs. Results Plasma metabolic dysfunction in BD was determined in carbohydrate, hydroxy fatty acid, and polyunsaturated fatty acid metabolisms. A plasma biomarker panel with 13 compounds was constructed, which simultaneously distinguished BD from HC and DC (AUCs ranged from 0.810 to 0.966). Dysregulated PBMC metabolome was signatured by a significant elevation in lysophosphatidylcholines (LPCs) and ether-linked lysophosphatidylethanolamines (EtherLPEs). Ten PBMC-derived lipid composites showed good discrimination power (AUCs ranged from 0.900 to 0.973). Correlation analysis revealed a potential association between disease activity and the metabolites of plasma and PBMC, including sphingosine-1 phosphate and EtherLPE 18:2. Conclusions We identified metabolic biomarkers from plasma PBMC, which selectively discriminated BD from healthy control and patients with similar symptoms (recurrent mouth ulcers with/without genital ulcers). The strong correlation was determined between the BD activity and the lipid molecules. These findings may lead to the development for diagnostic and prognostic biomarkers based on a better understanding of the BD pathomechanism.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3