Augmented PFKFB3-mediated glycolysis by interferon-γ promotes inflammatory M1 polarization through the JAK2/STAT1 pathway in local vascular inflammation in Takayasu arteritis

Author:

Chen Rongyi,Wang Jinghua,Dai Xiaojuan,Wu Sifan,Huang Qingrong,Jiang Lindi,Kong Xiufang

Abstract

Abstract Background Takayasu arteritis (TAK) is characterized by pro-inflammatory M1 macrophage infiltration and increased interferon (IFN)-γ expression in vascular lesions. IFN-γ is a key cytokine involved in M1 polarization. Macrophage polarization is accompanied by metabolic changes. However, the metabolic regulation mechanism of IFN-γ in M1 macrophage polarization in TAK remains unclear. Methods Immunohistochemistry and immunofluorescence were employed to observe the expression of IFN-γ, PFKFB3 (6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, the rate-limiting enzyme in glycolysis), and macrophage surface markers in the vascular tissue. Monocyte-derived macrophages from patients with TAK were cultured to examine the role of PFKFB3 in IFN-γ-induced M1 macrophage polarization. Seahorse analysis was used to detect the alterations in glucose metabolism during this process. Quantitative reverse transcription PCR, flow cytometry, and western blot were used to confirm the phenotypes of macrophages and related signaling pathways. Results In the vascular adventitia of patients with TAK, an increase in PFKFB3 accompanied by IFN-γ expression was observed in M1 macrophages. In vitro, IFN-γ successfully induced macrophage differentiation into the M1 phenotype, which was manifested as an increase in CD80 and HLA-DR markers and the pro-inflammatory cytokines IL-6 and TNF-α. During this process, PFKFB3 expression and glycolysis levels were significantly increased. However, glycolysis and M1 polarization induced by IFN-γ were suppressed by a PFKFB3 inhibitor. In addition, JAK2/STAT1 phosphorylation was also enhanced in macrophages stimulated by IFN-γ. The effects of IFN-γ on macrophages, including the expression of PFKFB3, glycolysis, and M1 polarization, were also inhibited by the JAK inhibitor tofacitinib or STAT1 inhibitor fludarabine. Conclusion PFKFB3-mediated glycolysis promotes IFN-γ-induced M1 polarization through the JAK2/STAT1 signaling pathway, indicating that PFKFB3 plays an important role in M1 polarization mediated by IFN-γ; thus, PFKFB3 is a potential intervention target in TAK.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3