Author:
Lu Ying,Hao Chongbo,Yu Shanshan,Ma Zuan,Fu Xuelian,Qin Mingqing,Ding Menglei,Xu Zengguang,Fan Lieying
Abstract
Abstract
Background
Abnormal proliferation of fibroblast-like synoviocytes (FLSs) in the synovial lining layer is the primary cause of synovial hyperplasia and joint destruction in rheumatoid arthritis (RA). Currently, the relationship between metabolic abnormalities and FLS proliferation is a new focus of investigation. However, little is known regarding the relationship between amino acid metabolism and RA.
Methods
The concentrations of amino acids and cytokines in the synovial fluid of RA (n = 9) and osteoarthritis (OA, n = 9) were detected by LC–MS/MS and CBA assay, respectively. The mRNA and protein expression of cationic amino acid transporter-1 (CAT-1) were determined in FLSs isolated from RA and OA patients by real-time PCR and western blotting. MTT assay, cell cycle, apoptosis, invasion, and cytokine secretion were determined in FLSs knocked down of CAT-1 using siRNA or treated with D-arginine under normoxic and hypoxic culture conditions. A mouse collagen-induced arthritis (CIA) model was applied to test the therapeutic potential of blocking the uptake of L-arginine in vivo.
Results
L-rginine was upregulated in the synovial fluid of RA patients and was positively correlated with the elevation of the cytokines IL-1β, IL-6, and IL-8. Further examination demonstrated that CAT-1 was the primary transporter for L-arginine and was overexpressed on RA FLSs compared to OA FLSs. Moreover, knockdown of CAT-1 using siRNA or inhibition of L-arginine uptake using D-arginine significantly suppressed L-arginine metabolism, cell proliferation, migration, and cytokine secretion in RA FLSs under normoxic and hypoxic culture conditions in vitro but increased cell apoptosis in a dose-dependent manner. Meanwhile, in vivo assays revealed that an L-arginine-free diet or blocking the uptake of L-arginine using D-arginine suppressed arthritis progression in CIA mice.
Conclusion
CAT-1 is upregulated and promotes FLS proliferation by taking up L-arginine, thereby promoting RA progression.
Funder
National Natural Sciences Foundation of China
Natural Science Foundation of Jiangxi
Shanghai Municipal Health Commission
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献