Increased Wnt/β-catenin signaling contributes to autophagy inhibition resulting from a dietary magnesium deficiency in injury-induced osteoarthritis

Author:

Bai Ruijun,Miao Michael Z.,Li Hui,Wang Yiqing,Hou Ruixue,He Ke,Wu Xuan,Jin Hongyu,Zeng Chao,Cui Yang,Lei GuanghuaORCID

Abstract

Abstract Background Dietary magnesium deficiency, which is common in modern diet, has been associated with osteoarthritis (OA) susceptibility. Despite this clinical association, no study has addressed if dietary magnesium deficiency accelerates OA development, especially at molecular level. This study aimed to explore aggravating effects of dietary magnesium deficiency on cartilage damage in an injury-induced murine OA model and to determine the underlying mechanism. Methods Twelve-week-old C57BL/6J mice subject to injury-induced OA modeling were randomized into different diet groups in which the mice were fed a diet with daily recommended magnesium content (500 mg/kg) or diets with low magnesium content (100 or 300 mg/kg). Articular cartilage damage was evaluated using the OARSI score. To determine molecular mechanisms in vitro, mouse chondrocytes were treated with media of low magnesium conditions at 0.1 and 0.4 mM, compared with normal magnesium condition at 0.7 mM as control. Anabolic and catabolic factors, autophagy markers, β-catenin, Wnt ligands, and a magnesium channel transient receptor potential cation channel subfamily member 7 (TRPM7) were analyzed by quantitative real-time PCR and immunoblotting. Autolysosomes were detected by DALGreen staining via fluorescence microscopy and autophagosomes were evaluated by transmission electron microscopy. Autophagy markers, β-catenin, and TRPM7 were assessed in vivo in the mouse cartilage, comparing between dietary magnesium deficiency and normal diet, by immunohistochemistry. Results Dietary magnesium deficiency aggravated injury-induced cartilage damage, indicated by significant higher OARSI scores. Autophagy markers LC3-II and Beclin-1 were decreased both in low magnesium diet-fed mice and low magnesium-treated chondrocytes. The number of autolysosomes and autophagosomes was also reduced under low magnesium conditions. Moreover, magnesium deficiency induced decreased anabolic and increased catabolic effect of chondrocytes which could be restored by autophagy activator rapamycin. In addition, reduced autophagy under low magnesium conditions is mediated by activated Wnt/β-catenin signaling. The expression of TRPM7 also decreased in low magnesium diet-fed mice, indicating that downstream changes could be regulated through this channel. Conclusions Dietary magnesium deficiency contributes to OA development, which is mediated by reduced autophagy through Wnt/β-catenin signaling activation. These findings indicated potential benefits of adequate dietary magnesium for OA patients or those individuals at high risk of OA.

Funder

Young Scientists Fund

Publisher

Springer Science and Business Media LLC

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3