Network analysis of synovial RNA sequencing identifies gene-gene interactions predictive of response in rheumatoid arthritis

Author:

Sciacca Elisabetta,Surace Anna E. A.,Alaimo Salvatore,Pulvirenti Alfredo,Rivellese Felice,Goldmann Katriona,Ferro Alfredo,Latora Vito,Pitzalis Costantino,Lewis Myles J.

Abstract

Abstract Background To determine whether gene-gene interaction network analysis of RNA sequencing (RNA-Seq) of synovial biopsies in early rheumatoid arthritis (RA) can inform our understanding of RA pathogenesis and yield improved treatment response prediction models. Methods We utilized four well curated pathway repositories obtaining 10,537 experimentally evaluated gene-gene interactions. We extracted specific gene-gene interaction networks in synovial RNA-Seq to characterize histologically defined pathotypes in early RA and leverage these synovial specific gene-gene networks to predict response to methotrexate-based disease-modifying anti-rheumatic drug (DMARD) therapy in the Pathobiology of Early Arthritis Cohort (PEAC). Differential interactions identified within each network were statistically evaluated through robust linear regression models. Ability to predict response to DMARD treatment was evaluated by receiver operating characteristic (ROC) curve analysis. Results Analysis comparing different histological pathotypes showed a coherent molecular signature matching the histological changes and highlighting novel pathotype-specific gene interactions and mechanisms. Analysis of responders vs non-responders revealed higher expression of apoptosis regulating gene-gene interactions in patients with good response to conventional synthetic DMARD. Detailed analysis of interactions between pairs of network-linked genes identified the SOCS2/STAT2 ratio as predictive of treatment success, improving ROC area under curve (AUC) from 0.62 to 0.78. We identified a key role for angiogenesis, observing significant statistical interactions between NOS3 (eNOS) and both CAMK1 and eNOS activator AKT3 when comparing responders and non-responders. The ratio of CAMKD2/NOS3 enhanced a prediction model of response improving ROC AUC from 0.63 to 0.73. Conclusions We demonstrate a novel, powerful method which harnesses gene interaction networks for leveraging biologically relevant gene-gene interactions leading to improved models for predicting treatment response.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3