Biological potential alterations of migratory chondrogenic progenitor cells during knee osteoarthritic progression

Author:

Wang Yu-Xing,Zhao Zhi-Dong,Wang Qian,Li Zhong-Li,Huang Ya,Zhao Sen,Hu Wei,Liang Jia-Wu,Li Pei-Lin,Wang Hua,Mao Ning,Wu Chu-Tse,Zhu HengORCID

Abstract

Abstract Background Although increasing studies have demonstrated that chondrogenic progenitor cells (CPCs) remain present in human osteoarthritic cartilage, the biological alterations of the CPCs from the less diseased lateral tibial condyle and the more diseased medial condyle of same patient remain to be investigated. Methods CPCs were isolated from paired grade 1–2 and grade 3–4 osteoarthritic cartilage by virtue of cell migratory capacities. The cell morphology, immunophenotype, self-renewal, multi-differentiation, and cell migration of these CPCs were evaluated. Additionally, the distributions of CD105+/CD271+ cells in OA osteochondral specimen were determined. Furthermore, a high-throughput mRNA sequencing was performed. Results Migratory CPCs (mCPCs) robustly outgrew from mildly collagenases-digested osteoarthritic cartilages. The mCPCs from grade 3–4 cartilages (mCPCs, grades 3–4) harbored morphological characteristics, cell proliferation, and colony formation capacity that were similar to those of the mCPCs from the grade 1–2 OA cartilages (mCPCs, grades 1–2). However, the mCPCs (grades 3–4) highly expressed CD271. In addition, the mCPCs (grades 3–4) showed enhanced osteo-adipogenic activities and decreased chondrogenic capacity. Furthermore, the mCPCs (grades 3–4) exhibited stronger cell migration in response to osteoarthritis synovial fluids. More CD105+/CD271+ cells resided in grade 3–4 articular cartilages. Moreover, the results of mRNA sequencing showed that mCPCs (grades 3–4) expressed higher migratory molecules. Conclusions Our data suggest that more mCPCs (grades 3–4) migrate to injured articular cartilages but with enhanced osteo-adipogenic and decreased chondrogenic capacity, which might explain the pathological changes of mCPCs during the progression of OA from early to late stages. Thus, these dysfunctional mCPCs might be optional cell targets for OA therapies.

Funder

National Natural Science Foundation of China

Beijing Natural Sciences Grants

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3