A novel method to monitor rheumatoid arthritis prevalence using hospital and medication databases

Author:

Koller-Smith Louise,Mehdi Ahmed,March Lyn,Tooth Leigh,Mishra Gita D.,Thomas RanjenyORCID

Abstract

Abstract Background Most estimates of rheumatoid arthritis (RA) prevalence, including all official figures in Australia and many other countries, are based on self-report. Self-report has been shown to overestimate RA, but the ‘gold standard’ of reviewing individual medical records is costly, time-consuming and impractical for large-scale research and population monitoring. This study provides an algorithm to estimate RA cases using administrative data that can be adjusted for use in multiple contexts to provide the first approximate RA cohort in Australia that does not rely on self-report. Methods Survey data on self-reported RA and medications from 25 467 respondents of the Australian Longitudinal Study on Women’s Health (ALSWH) were linked with data from the national medication reimbursement database, hospital and emergency department (ED) episodes, and Medicare Benefits codes. RA prevalence was calculated for self-reported RA, self-reported RA medications, dispensed RA medications, and hospital/ED RA presentations. Linked data were used to exclude individuals with confounding autoimmune conditions. Results Of 25 467 survey respondents, 1367 (5·4%) women self-reported disease. Of the 26 840 women with hospital or ED presentations, 292 (1·1%) received ICD-10 codes for RA. There were 1038 (2·8%) cases by the medication database definition, and 294 cases (1·5%) by the self-reported medication definition. After excluding individuals with other rheumatic conditions, prevalence was 3·9% for self-reported RA, 1·9% based on the medication database definition and 0·5% by self-reported medication definition. This confirms the overestimation of RA based on self-reporting. Conclusions We provide an algorithm for identifying individuals with RA, which could be used for population studies and monitoring RA in Australia and, with adjustments, internationally. Its balance of accuracy and practicality will be useful for health service planning using relatively easily accessible input data.

Funder

National Health and Medical Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3