Abstract
Abstract
Objectives
The objective of this study was to develop and validate a prediction model for renal urate underexcretion (RUE) in male gout patients.
Methods
Men with gout enrolled from multicenter cohorts in China were analyzed as the development and validation data sets. The RUE phenotype was defined as fractional excretion of uric acid (FEUA) <5.5%. Candidate genetic and clinical features were screened by the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation. Machine learning algorithms (stochastic gradient descent (SGD), logistic regression, support vector machine) were performed to construct a predictive classifier of RUE. Models were assessed by the area under the receiver operating characteristic curve (AUC) and the precision-recall curve (PRC).
Results
One thousand two hundred thirty-eight and two thousand twenty-three patients were enrolled as the development and validation cohorts, with 1220 and 754 randomly chosen patients genotyped, respectively. Rs3775948.GG of SLC2A9/GLUT9, rs504915.AA of NRXN2/URAT1, and 7 clinical features (age, hypertension, nephrolithiasis, blood glucose, serum urate, urea nitrogen, and creatinine) were generated by LASSO. Two additional SNP variants (rs2231142.GG of ABCG2 and rs11231463.GG of SLC22A9/OAT7) were selected based on their contributions to gout in the development cohort and their reported effects on renal urate handling. The optimized classifiers yielded AUCs of ~0.914 and PRCs of ~0.980 using these 11 variables. The SGD model was conducted in the validation cohort with an AUC of 0.899 and the PRC of 0.957.
Conclusions
A prediction model for RUE composed of four SNPs and readily accessible clinical features was established with acceptable accuracy for men with gout.
Funder
the national key research and development program of china
the national natural science foundation of china
the shandong province key research and development program
Publisher
Springer Science and Business Media LLC
Reference31 articles.
1. Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16(7):380–90.
2. Liu R, Han C, Wu D, Xia X, Gu J, Guan H, et al. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: a systematic review and meta-analysis. Biomed Res Int. 2015;2015:762820.
3. Kim JW, Kwak SG, Lee H, Kim SK, Choe JY, Park SH. Prevalence and incidence of gout in Korea: data from the national health claims database 2007-2015. Rheumatol Int. 2017;37(9):1499–506.
4. Gao Q, Cheng X, Merriman TR, Wang C, Cui L, Zhang H, et al. Trends in the manifestations of 9754 gout patients in a Chinese clinical center: a 10-year observational study. Joint Bone Spine. 2021;88(6):105078. https://doi.org/10.1016/j.jbspin.2020.09.010.
5. Tin A, Marten J, Halperin Kuhns VL, Li Y, Wuttke M, Kirsten H, et al. Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels. Nat Genet. 2019;51(10):1459–74.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献