Inflammatory cytokines and mechanical injury induce post-traumatic osteoarthritis-like changes in a human cartilage-bone-synovium microphysiological system

Author:

Dwivedi Garima,Flaman Lisa,Alaybeyoglu Begum,Struglics André,Frank Eliot H.,Chubinskya Susan,Trippel Stephen B.,Rosen Vicki,Cirit Murat,Grodzinsky Alan J.

Abstract

Abstract Background Traumatic knee injuries in humans trigger an immediate increase in synovial fluid levels of inflammatory cytokines that accompany impact damage to joint tissues. We developed a human in vitro cartilage-bone-synovium (CBS) coculture model to study the role of mechanical injury and inflammation in the initiation of post-traumatic osteoarthritis (PTOA)-like disease. Methods Osteochondral plugs (cartilage-bone, CB) along with joint capsule synovium explants (S) were harvested from 25 cadaveric distal femurs from 16 human donors (Collin’s grade 0–2, 23–83years). Two-week monocultures (cartilage (C), bone (B), synovium (S)) and cocultures (CB, CBS) were established. A PTOA-like disease group was initiated via coculture of synovium explants with mechanically impacted osteochondral plugs (CBS+INJ, peak stress 5MPa) with non-impacted CB as controls. Disease-like progression was assessed through analyses of changes in cell viability, inflammatory cytokines released to media (10-plex ELISA), tissue matrix degradation, and metabolomics profile. Results Immediate increases in concentrations of a panel of inflammatory cytokines occurred in CBS+INJ and CBS cocultures and cultures with S alone (IL-1, IL-6, IL-8, and TNF-α among others). CBS+INJ and CBS also showed increased chondrocyte death compared to uninjured CB. The release of sulfated glycosaminoglycans (sGAG) and associated ARGS-aggrecan neoepitope fragments to the medium was significantly increased in CBS and CBS+INJ groups. Distinct metabolomics profiles were observed for C, B, and S monocultures, and metabolites related to inflammatory response in CBS versus CB (e.g., kynurenine, 1-methylnicotinamide, and hypoxanthine) were identified. Conclusion CBS and CBS+INJ models showed distinct cellular, inflammatory, and matrix-related alterations relevant to PTOA-like initiation/progression. The use of human knee tissues from donors that had no prior history of OA disease suggests the relevance of this model in highlighting the role of injury and inflammation in earliest stages of PTOA progression.

Funder

NIH-NCATS

Rush Klaus Kuettner Endowed Chair

United States Department of Veterans Affairs and Indiana University School of Medicine

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3