Identification and prediction of difficult-to-treat rheumatoid arthritis patients in structured and unstructured routine care data: results from a hackathon

Author:

Messelink Marianne A.ORCID,Roodenrijs Nadia M. T.,van Es Bram,Hulsbergen-Veelken Cornelia A. R.,Jong Sebastiaan,Overmars L. Malin,Reteig Leon C.,Tan Sander C.,Tauber Tjebbe,van Laar Jacob M.,Welsing Paco M. J.,Haitjema Saskia

Abstract

Abstract Background The new concept of difficult-to-treat rheumatoid arthritis (D2T RA) refers to RA patients who remain symptomatic after several lines of treatment, resulting in a high patient and economic burden. During a hackathon, we aimed to identify and predict D2T RA patients in structured and unstructured routine care data. Methods Routine care data of 1873 RA patients were extracted from the Utrecht Patient Oriented Database. Data from a previous cross-sectional study, in which 152 RA patients were clinically classified as either D2T or non-D2T, served as a validation set. Machine learning techniques, text mining, and feature importance analyses were performed to identify and predict D2T RA patients based on structured and unstructured routine care data. Results We identified 123 potentially new D2T RA patients by applying the D2T RA definition in structured and unstructured routine care data. Additionally, we developed a D2T RA identification model derived from a feature importance analysis of all available structured data (AUC-ROC 0.88 (95% CI 0.82–0.94)), and we demonstrated the potential of longitudinal hematological data to differentiate D2T from non-D2T RA patients using supervised dimension reduction. Lastly, using data up to the time of starting the first biological treatment, we predicted future development of D2TRA (AUC-ROC 0.73 (95% CI 0.71–0.75)). Conclusions During this hackathon, we have demonstrated the potential of different techniques for the identification and prediction of D2T RA patients in structured as well as unstructured routine care data. The results are promising and should be optimized and validated in future research.

Funder

Galapagos NL

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3