ALW peptide ameliorates lupus nephritis in MRL/lpr mice

Author:

Wang Huixia,Lu Mei,Zhai Siyue,Wu Kunyi,Peng Lingling,Yang Jie,Xia YuminORCID

Abstract

Abstract Background Lupus nephritis (LN) is a common and serious complication of systemic lupus erythematosus. Anti-double-stranded (ds) DNA immunoglobulin G (IgG) plays a pivotal role in the pathogenesis of LN. Currently, there are various therapies for patients with LN; however, most of them are associated with considerable side effects. We confirmed previously that ALW (ALWPPNLHAWVP), a 12-amino acid peptide, inhibited the binding of polyclonal anti-dsDNA antibodies to mesangial cells and isolated glomeruli in vitro. In this study, we further investigate whether the administration of ALW peptide decreases renal IgG deposition and relevant damage in MRL/lpr lupus-prone mice. Methods Forty female MRL/lpr mice were randomly divided into four groups. The mice were intravenously injected with D-form ALW peptide (ALW group), scrambled peptide (PLP group), and normal saline (NaCl group) or were not treated (blank group). The IgG deposition, the histopathologic changes, and the expressions of profibrotic factors were analyzed in the kidney of MRL/lpr mice. Results Compared with the other groups, glomerular deposition of IgG, IgG2a, IgG2b, and IgG3 was decreased in the ALW group. Moreover, ALW administration attenuated renal histopathologic changes in MRL/lpr mice, including mesangial proliferation and infiltration of inflammatory cells. Furthermore, the expressions of profibrotic cytokines, such as transforming growth factor-beta1 (TGF-β1) and platelet-derived growth factor B (PDGF-B), decreased in the serum and kidney tissue of ALW-treated mice. Conclusions Our study demonstrated that ALW peptide ameliorates the murine model of LN, possibly through inhibiting renal IgG deposition and relevant tissue inflammation and fibrosis.

Funder

The National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

The Innovation Capability Support Plan of Shaanxi Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3