Author:
Peña Alexis N.,Sommerfeld Sven D.,Anderson Amy E.,Han Jin,Maestas David R.,Mejias Joscelyn C.,Woodell-May Jennifer,King William,Ganguly Sudipto,Elisseeff Jennifer H.
Abstract
AbstractOsteoarthritis (OA) is a degenerative disease associated with cartilage degradation, osteophyte formation, and fibrillation. Autologous Protein Solution (APS), a type of autologous anti-inflammatory orthobiologic, is used for pain management and treatment of OA. Various compositions of autologous PRP formulations are in clinical use for musculoskeletal pathologies, by nature of their minimal processing and source of bioactive molecules. Currently, there is no consensus on the optimal composition of the complex mixture. In this study, we focused on elucidating the immune cell subtypes and phenotypes in APS. We identified the immune cell types in APS from healthy donors and investigated phenotypic changes in the immune cells after APS processing. Based on flow cytometric analysis, we found that neutrophils and T cells are the most abundant immune cell types in APS, while monocytes experience the largest fold change in concentration compared to WBCs. Gene expression profiling revealed that APS processing results in differential gene expression changes dependent on immune cell type, with the most significantly differentially regulated genes occurring in the monocytes. Our results demonstrate that the mechanical processing of blood, whose main purpose is enrichment and separation, can alter its protein and cellular composition, as well as cellular phenotypes in the final product.
Funder
Zimmer Biomet
National Science Foundation
Morton Goldberg chair
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献