Decreased microRNA-155 in Behcet’s disease leads to defective control of autophagy thereby stimulating excessive proinflammatory cytokine production

Author:

Liang Liang,Zhou Qingyun,Feng Lujia

Abstract

Abstract Background Earlier, we reported that the microRNA (miR)-155 expression in dendritic cells (DCs) from Behcet’s disease (BD) patients was decreased and affected cytokine production of DCs. In this study, we investigated the mechanisms whereby miR-155 regulates cytokine production by DCs. Methods The formation of autophagosomes in DCs was detected by transmission electron microscopy. Western blotting was used to detect the protein levels of LC3, Beclin-1, P62, p-mTOR, and p-Akt in DCs. TNF-α, IL-6, and IL-1β expression were investigated by ELISA. MiR-155 mimics were transfected to DCs to evaluate its effects on autophagy and cytokine production. RNA interference was used to downregulate the expression of TAB2. Results The formation of autophagosomes was found in DCs of active BD patients. The expressions of LC3-II, Beclin-1, and P62 were significantly increased in DCs of active BD patients compared to that of inactive BD patients and healthy controls. The expressions of IL-6, IL-1β, and TNF-α were significantly increased in DCs of active BD patients compared to that of healthy controls. The autophagy promoter (3-MA) and inhibitor (rapamycin) significantly decreased or increased the expression of TNF-α, IL-6, and IL-1β by DCs. The expression of LC3-II and Beclin-1 was significantly increased, but the expression of P62 proteins was decreased in DCs transfected with miR-155 mimics or after TAB2 was downregulated. The expression of TNF-α, IL-6, and IL-1β was decreased in DCs after miR-155 was upregulated or TAB2 was downregulated. The ratios of p-Akt/Akt and p-mTOR/mTOR were decreased in DCs after miR-155 was upregulated. Conclusions These results suggest that miR-155 affects the production of TNF-α, IL-6, and IL-1β by DCs through activation of the Akt/mTOR signaling pathway and by affecting the process of autophagy.

Funder

Basic Research program of Chongqing

Natural Science Foundation Major International (Regional) Joint Research Project

Natural Science Foundation Project of Chongqing

Chongqing Key Laboratory of Ophthalmology

Chongqing Science & Technology Platform and Base Construction Program

the Science and Technology Project Foundation of Chongqing

National Natural Science Foundation Project

Publisher

Springer Science and Business Media LLC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3