DZ2002 ameliorates fibrosis, inflammation, and vasculopathy in experimental systemic sclerosis models

Author:

Zhang Zongwang,Wu Yanwei,Wu Bing,Qi Qing,Li Heng,Lu Huimin,Fan Chen,Feng Chunlan,Zuo Jianping,Niu Lili,Tang WeiORCID

Abstract

AbstractBackgroundSystemic sclerosis is a multisystem inflammatory and vascular lesion leading to extensive tissue fibrosis. A reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor, DZ2002, modulates the pathologic processes of various inflammatory diseases and autoimmune diseases. This study is designed to investigate the therapeutic potentiality of DZ2002 for experimental systemic sclerosis models.MethodsThe anti-inflammatory and anti-fibrotic features of DZ2002 and its mechanisms were investigated in a bleomycin (BLM)-induced dermal fibrosis mice model. The effects of DZ2002 on expression of extracellular matrix components and TGF-β signaling in human dermal fibroblasts were analyzed. Simultaneously, the effects of DZ2002 on macrophage activation and endothelial cell adhesion molecule expression were also evaluated.ResultsDZ2002 significantly attenuated dermal fibrosis in BLM-induced mice. Consistently, DZ2002 inhibited the expression of various molecules associated with dermal fibrosis, including transforming growth factor β1, connective tissue growth factor, tumor necrosis factor-α, interferon-γ, IL-1β, IL-4, IL-6, IL-10, IL-12p40, IL-17A, and monocyte chemotactic protein 1 in the lesional skin of BLM-induced mice. Furthermore, DZ2002 decreased the proportion of macrophages, neutrophils, and T cells (especially T helper cells) in the skin tissue of BLM-induced mice. In addition, DZ2002 attenuated both M1 macrophage and M2 macrophage differentiation in vivo and in vitro. Importantly, DZ2002 directly reversed the profibrotic phenotype of transforming growth factor-β1-treated dermal fibroblasts and suppressed ICAM-1, VCAM-1, VEGF, bFGF, and ET-1 expression in endothelial cells. Finally, our investigations showed that DZ2002 relieved systemic sclerosis by regulating fibrosis TGF-β/Smad signaling pathway.ConclusionsDZ2002 prevents the development of experimental dermal fibrosis by reversing the profibrotic phenotype of various cell types and would be a potential drug for the treatment of systemic sclerosis.

Funder

“Personalized Medicines——Molecular Signature-based Drug Discovery and Development”, Strategic Priority Research Program of the Chinese Academy of Sciences

Science & Technology Commission of Shanghai Municipality, China

Publisher

Springer Science and Business Media LLC

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3