Increased oxidative stress contributes to impaired peripheral CD56dimCD57+ NK cells from patients with systemic lupus erythematosus

Author:

Lu Zhimin,Tian Yao,Bai Ziran,Liu Jiaqing,Zhang Yan,Qi Jingjing,Jin Minli,Zhu Jie,Li Xia

Abstract

Abstract Background Systemic lupus erythematosus (SLE) is characterized by loss of immune tolerance and imbalance of immune cell subsets. Natural killer (NK) cells contribute to regulate both the innate and adaptive immune response. In this study, we aimed to detect alterations of peripheral NK cells and explore intrinsic mechanisms involving in NK cell abnormality in SLE. Methods Blood samples from healthy controls (HCs) and patients with SLE and rheumatoid arthritis (RA) were collected. The NK count, NK subsets (CD56bright, CD56dimCD57, and CD56dimCD57+), phenotypes, and apoptosis were evaluated with flow cytometer. Mitochondrial reactive oxygen species (mtROS) and total ROS levels were detected with MitoSOX Red and DCFH-DA staining respectively. Published data (GSE63829 and GSE23695) from Gene Expression Omnibus (GEO) was analyzed by Gene Set Enrichment Analysis (GSEA). Results Total peripheral NK count was down-regulated in untreated SLE patients in comparison to that in untreated RA patients and HCs. SLE patients exhibited a selective reduction in peripheral CD56dimCD57+ NK cell proportion, which was negatively associated with disease activity and positively correlated with levels of complement(C)3 and C4. Compared with HCs, peripheral CD56dimCD57+ NK cells from SLE patients exhibited altered phenotypes, increased endogenous apoptosis and higher levels of mtROS and ROS. In addition, when treated with hydrogen peroxide (H2O2), peripheral CD56dimCD57+ NK cell subset was more prone to undergo apoptosis than CD56dimCD57 NK cells. Furthermore, this NK cell subset from SLE patients exhibited impaired cytotoxicity in response to activated CD4+ T cells in vitro. Conclusion Our study demonstrated a selective loss of mature CD56dimCD57+ NK cell subset in SLE patients, which may caused by preferential apoptosis of this subset under increased oxidative stress in SLE. The attenuated in vitro cytotoxicity of CD56dimCD57+ NK cells may contribute to the impaired ability of eliminating pathogenic CD4+ T cells in SLE.

Funder

national natural science foundation of china

distinguished professor of liaoning province

dalian key laboratory of human homeostasis microbiology and disease immunology

natural science foundation of liaoning province

natural science foundation of liaoning provincial department education

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3