Using the co-expression network of T cell-activation-related genes to assess the disease activity in Takayasu’s arteritis patients

Author:

Tian YixiaoORCID,Li JingORCID,Tian XinpingORCID,Zeng XiaofengORCID

Abstract

Abstract Background There have been lacking reliable serum biomarkers in assessing the disease activity of Takayasu’s arteritis (TAK). This study aimed to assess the disease activity of TAK by assayed gene expression levels in peripheral mononuclear cells (PBMCs). Methods The expression level of genes that essential in T cell activation in PBMCs in active TAK patients, inactive TAK patients, and healthy controls were detected by real-time fluorescence quantitative polymerase chain reaction, including TCR, CD28, CD40, CD40L, PD-1, PD-L1, PD-L2, CTLA4, TIGIT, TIM3, LAG3, CCL5, T-bet, RORC, and FOXP3. Gene co-expression network was established, and the signature of the topology structure in active TAK patients compared to the inactive TAK patients were extracted and described by formulas. Respectively, the disease activity was assessed by the routine serum biomarkers, including ESR, CRP, IL-6, and TNF-α, the gene expression level of TCR, CD28, T-bet, and RORC, as well as the signature of the topology structure, and the diagnostic efficacies were compared. Results Compared with the inactive TAK patient group, the active TAK patient group had a greater clustering coefficient in the network consisting of genes that essential in T cell activation. When assessing the disease activity used this signature of topology structure, the sensitivity was 90.9%, the specificity was 100%, and the AUC was 0.98, which was greater than the AUCs of these biomarkers. Conclusions The signature of the topology structure could distinguish the active TAK patients from inactive TAK patients. This maybe is a novel evaluation algorithm of disease activity.

Publisher

Springer Science and Business Media LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3