CD14+CD16− monocytes are the main precursors of osteoclasts in rheumatoid arthritis via expressing Tyro3TK

Author:

Xue JimengORCID,Xu Liling,Zhu Huaqun,Bai Mingxin,Li Xin,Zhao Zhen,Zhong Hua,Cheng Gong,Li Xue,Hu Fanlei,Su Yin

Abstract

Abstract Background Monocytes as precursors of osteoclasts in rheumatoid arthritis (RA) are well demonstrated, while monocyte subsets in osteoclast formation are still controversial. Tyro3 tyrosine kinase (Tyro3TK) is a member of the receptor tyrosine kinase family involved in immune homeostasis, the role of which in osteoclast differentiation was reported recently. This study aimed to compare the osteoclastic capacity of CD14+CD16+ and CD14+CD16 monocytes in RA and determine the potential involvement of Tyro3TK in their osteoclastogenesis. Methods Osteoclasts were induced from CD14+CD16+ and CD14+CD16 monocyte subsets isolated from healthy control (HC) and RA patients in vitro and evaluated by tartrate-resistant acid phosphatase (TRAP) staining. Then, the expression of Tyro3TK on CD14+CD16+ and CD14+CD16 monocyte subsets in the peripheral blood of RA, osteoarthritis (OA) patients, and HC were evaluated by flow cytometry and qPCR, and their correlation with RA patient clinical and immunological features was analyzed. The role of Tyro3TK in CD14+CD16 monocyte-mediated osteoclastogenesis was further investigated by osteoclast differentiation assay with Tyro3TK blockade. Results The results revealed that CD14+CD16 monocytes were the primary source of osteoclasts. Compared with HC and OA patients, the expression of Tyro3TK on CD14+CD16 monocytes in RA patients was significantly upregulated and positively correlated with the disease manifestations, such as IgM level, tender joint count, and the disease activity score. Moreover, anti-Tyro3TK antibody could inhibit Gas6-mediated osteoclast differentiation from CD14+CD16 monocytes in a dose-dependent manner. Conclusions These findings indicate that elevated Tyro3TK on CD14+CD16 monocytes serves as a critical signal for osteoclast differentiation in RA.

Funder

National Natural Science Foundation of China

Beijing Science and Technology Planning Project

Beijing Municipal Natural Science Foundation

Beijing Nova Program

Peking University People’s Hospital Research and Development Funds

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3