Automated assessment of foot elevation in adults with hereditary spastic paraplegia using inertial measurements and machine learning

Author:

Ollenschläger MalteORCID,Höfner Patrick,Ullrich Martin,Kluge Felix,Greinwalder Teresa,Loris Evelyn,Regensburger Martin,Eskofier Bjoern M.,Winkler Jürgen,Gaßner HeikoORCID

Abstract

Abstract Background Hereditary spastic paraplegias (HSPs) cause characteristic gait impairment leading to an increased risk of stumbling or even falling. Biomechanically, gait deficits are characterized by reduced ranges of motion in lower body joints, limiting foot clearance and ankle range of motion. To date, there is no standardized approach to continuously and objectively track the degree of dysfunction in foot elevation since established clinical rating scales require an experienced investigator and are considered to be rather subjective. Therefore, digital disease-specific biomarkers for foot elevation are needed. Methods This study investigated the performance of machine learning classifiers for the automated detection and classification of reduced foot dorsiflexion and clearance using wearable sensors. Wearable inertial sensors were used to record gait patterns of 50 patients during standardized 4 $$\times$$ ×  10 m walking tests at the hospital. Three movement disorder specialists independently annotated symptom severity. The majority vote of these annotations and the wearable sensor data were used to train and evaluate machine learning classifiers in a nested cross-validation scheme. Results The results showed that automated detection of reduced range of motion and foot clearance was possible with an accuracy of 87%. This accuracy is in the range of individual annotators, reaching an average accuracy of 88% compared to the ground truth majority vote. For classifying symptom severity, the algorithm reached an accuracy of 74%. Conclusion Here, we show that the present wearable gait analysis system is able to objectively assess foot elevation patterns in HSP. Future studies will aim to improve the granularity for continuous tracking of disease severity and monitoring therapy response of HSP patients in a real-world environment.

Funder

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Förderverein für HSP-Forschung

Universitätsklinikum Erlangen

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3