Genomic and phenotypic landscapes of X-linked hereditary hearing loss in the Chinese population
-
Published:2024-09-13
Issue:1
Volume:19
Page:
-
ISSN:1750-1172
-
Container-title:Orphanet Journal of Rare Diseases
-
language:en
-
Short-container-title:Orphanet J Rare Dis
Author:
Feng Haifeng,Huang Shasha,Ma Ying,Yang Jinyuan,Chen Yijin,Wang Guojian,Han Mingyu,Kang Dongyang,Zhang Xin,Dai Pu,Yuan Yongyi
Abstract
Abstract
Background
Hearing loss (HL) is the most common sensory birth deficit worldwide, with causative variants in more than 150 genes. However, the etiological contribution and clinical manifestations of X-linked inheritance in HL remain unclear within the Chinese HL population. In this study, we focused on X-linked hereditary HL and aimed to assess its contribution to hereditary HL and identify the genotype–phenotype relationship.
Methods
We performed a molecular epidemiological investigation of X-linked hereditary HL based on next-generation sequencing and third-generation sequencing in 3646 unrelated patients with HL. We also discussed the clinical features associated with X-linked non-syndromic HL-related genes based on a review of the literature.
Results
We obtained a diagnostic rate of 52.72% (1922/3646) among our patients; the aggregate contribution of HL caused by genes on the X chromosome in this cohort was ~ 1.14% (22/1922), and POU3F4 variants caused ~ 59% (13/22) of these cases. We found that X-linked HL was congenital or began during childhood in all cases, with representative audiological profiles or typical cochlear malformations in certain genes. Genotypic and phenotypic analyses showed that causative variants in PRPS1 and AIFM1 were mainly of the missense type, suggesting that phenotypic variability was correlated with the different effects that the replaced residues exert on structure and function. Variations in SMPX causing truncation of the protein product were associated with DFNX4, which resulted in typical audiological profiles before and after the age of 10 years, whereas nontruncated proteins typically led to distal myopathy. No phenotypic differences were identified in patients carrying POU3F4 or COL4A6 variants.
Conclusions
Our work constitutes a preliminary evaluation of the molecular contribution of X-linked genes in heritable HL (~ 1.14%). The 15 novel variants reported here expand the mutational spectrum of these genes. Analysis of the genotype–phenotype relationship is valuable for X-linked HL precise diagnostics and genetic counseling. Elucidation of the pathogenic mechanisms and audiological profiles of HL can also guide choices regarding treatment modalities.
Funder
National key Research and development project of China National Natural Science Foundation of China Natural Science Foundation of Tianjin Municipal Science and Technology Commission
Publisher
Springer Science and Business Media LLC
Reference51 articles.
1. Smith RJ, Bale JF Jr, White KR. Sensorineural hearing loss in children. Lancet. 2005;365(9462):879–90. 2. Liu X, Han D, Li J, Han B, Ouyang X, Cheng J, Li X, Jin Z, Wang Y, Bitner-Glindzicz M, et al. Loss-of-function mutations in the PRPS1 gene cause a type of nonsyndromic X-linked sensorineural deafness, DFN2. Am J Hum Genet. 2010;86(1):65–71. 3. de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, Huber I, Monaco AP, Malcolm S, Pembrey ME, Ropers HH, Cremers FP. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science. 1995;267(5198):685–8. 4. Schraders M, Haas SA, Weegerink NJ, Oostrik J, Hu H, Hoefsloot LH, Kannan S, Huygen PL, Pennings RJ, Admiraal RJ, et al. Next-generation sequencing identifies mutations of SMPX, which encodes the small muscle protein, X-linked, as a cause of progressive hearing impairment. Am J Hum Genet. 2011;88(5):628–34. 5. Huebner AK, Gandia M, Frommolt P, Maak A, Wicklein EM, Thiele H, Altmüller J, Wagner F, Viñuela A, Aguirre LA, et al. Nonsense mutations in SMPX, encoding a protein responsive to physical force, result in X-chromosomal hearing loss. Am J Hum Genet. 2011;88(5):621–7.
|
|