Abstract
Abstract
Introduction
People with Xeroderma Pigmentosum (XP) have a heightened sensitivity to ultraviolet radiation (UVR) and are advised to wear photoprotective clothing including a visor covering the face and neck. Photoprotective visors are homemade and predominately worn by children with decreasing frequency as age increases. To improve upon the current design and efficacy we were tasked with developing a prototype visor to meet patients’ needs.
Methods
Adopting a codesign methodology, patients’ experiences of wearing a visor and patient and carer views of emerging prototypes were explored during interviews. A thematic analysis was conducted in parallel with data collection and themes were interpreted into design cues; desirable attributes of a visor that would counteract the negative user experiences and meet the requirements described by patients and carers. The design cues guided the iterative development of prototypes by academic engineers.
Results
Twenty-four interviews were conducted with patients and carers. Thematic analysis resulted in the following five themes: Being safe from UVR exposure; self-consciousness; temperature effects; acoustic difficulties; and material properties. The following design cues were developed from the themes respectively; materials and design with high UVR protection; ability to customise with own headwear; ventilation to reduce steaming up; acoustic functionality to enable hearing and speech; foldable, portable, and easy to put on and take off.
Conclusions
It is important to understand people’s experiences of using medical devices to improve their safety, efficiency and user satisfaction. The user experience themes and design cues, informed the iterative development of low fidelity visor prototypes as part of a codesign process. These design cues and responses to the prototypes are guiding commercial manufacturing and regulatory approval. The visor can then be prescribed to patients, providing an equitable service of care.
Funder
Invention for Innovation
the Engineering and Physical Sciences Research Council
Publisher
Springer Science and Business Media LLC