Real-world multidisciplinary outcomes of onasemnogene abeparvovec monotherapy in patients with spinal muscular atrophy type 1: experience of the French cohort in the first three years of treatment
-
Published:2024-09-13
Issue:1
Volume:19
Page:
-
ISSN:1750-1172
-
Container-title:Orphanet Journal of Rare Diseases
-
language:en
-
Short-container-title:Orphanet J Rare Dis
Author:
Desguerre Isabelle, Barrois RémiORCID, Audic Frédérique, Barnerias Christine, Chabrol Brigitte, Davion Jean Baptiste, Durigneux Julien, Espil-Taris Caroline, Gomez-Garcia de la Banda Marta, Guichard Marine, Isapof Arnaud, Nougues Marie Christine, Laugel Vincent, Le Goff Laure, Mercier Sandra, Pervillé Anne, Richelme Christian, Thibaud Marie, Sarret Catherine, Schweitzer Cyril, Testard Hervé, Trommsdorff Valérie, Vanhulle Catherine, Walther-Louvier Ulrike, Altuzarra Cécilia, Chouchane Mondher, Ropars Juliette, Quijano-Roy Susana, Cances Claude
Abstract
Abstract
Background
Spinal muscular atrophy type 1 (SMA1) is the most severe and early form of SMA, a genetic disease with motor neuron degeneration. Onasemnogene abeparvovec gene transfer therapy (GT) has changed the natural history of SMA1, but real-world data are scarce.
Methods
A French national expert committee identified 95 newly diagnosed treatment-naive SMA1 patients between June 2019 and June 2022. We prospectively report on children treated with GT as the first and only therapy who had more than one-year of follow-up.
Results
Forty-six SMA1 patients received GT. Twelve patients received other treatments. Patients with respiratory insufficiency were oriented toward palliative care after discussion with families. Twenty-nine of the treated patients with more than 12 months of follow-up were included in the follow-up analysis. Among them, 17 had 24 months of follow-up. The mean age at treatment was 7.5 (2.1–12.5) months. Twenty-two patients had two SMN2 copies, and seven had three copies. One infant died in the month following GT due to severe thrombotic microangiopathy, and another died due to respiratory distress. Among the 17 patients with 24 months of follow-up, 90% required spinal bracing (15/17), three patients required nocturnal noninvasive ventilation, and two needed gastrostomy. Concerning motor milestones at the 24-month follow-up, all patients held their head, 15/17 sat for 30 s unassisted, and 12/17 stood with aid. Motor scores (CHOPINTEND and HINE-2) and thoracic circumference significantly improved in all patients.
Conclusions
Our study shows favorable motor outcomes and preserved respiratory and feeding functions in treatment-naive SMA1 infants treated by GT as the first and only therapy before respiratory and bulbar dysfunctions occurred. Nevertheless, almost all patients developed spinal deformities.
Funder
Agence Nationale de Sécurité du Médicament et des Produits de Santé
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Verhaart IEC, Robertson A, Wilson IJ, Aartsma-Rus A, Cameron S, Jones CC, et al. Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis. 2017;12(1):124. 2. Finkel R, Bertini E, Muntoni F, Mercuri E. 209th ENMC international workshop: outcome measures and clinical trial readiness in spinal muscular atrophy 7–9 November 2014, Heemskerk The Netherlands. Neuromuscul Disord. 2015;25(7):593–602. 3. Mercuri E, Bertini E, Iannaccone ST. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol. 2012;11(5):443–52. 4. Calucho M, Bernal S, Alías L, March F, Venceslá A, Rodríguez-Álvarez FJ, et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. 2018;28(3):208–15. 5. Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet. 2002;70(2):358–68.
|
|