Abstract
Abstract
Background
Megalencephalic Leukoencephalopathy with subcortical Cysts (MLC) is a rare type of leukodystrophy characterized by astrocyte and myelin vacuolization, epilepsy and early-onset macrocephaly. MLC is caused by mutations in MLC1 or GLIALCAM, coding for two membrane proteins with an unknown function that form a complex specifically expressed in astrocytes at cell-cell junctions. Recent studies in Mlc1−/− or Glialcam−/− mice and mlc1−/− zebrafish have shown that MLC1 regulates glial surface levels of GlialCAM in vivo and that GlialCAM is also required for MLC1 expression and localization at cell-cell junctions.
Methods
We have generated and analysed glialcama−/− zebrafish. We also generated zebrafish glialcama−/−mlc1−/− and mice double KO for both genes and performed magnetic resonance imaging, histological studies and biochemical analyses.
Results
glialcama−/− shows megalencephaly and increased fluid accumulation. In both zebrafish and mice, this phenotype is not aggravated by additional elimination of mlc1. Unlike mice, mlc1 protein expression and localization are unaltered in glialcama−/− zebrafish, possibly because there is an up-regulation of mlc1 mRNA. In line with these results, MLC1 overexpressed in Glialcam−/− mouse primary astrocytes is located at cell-cell junctions.
Conclusions
This work indicates that the two proteins involved in the pathogenesis of MLC, GlialCAM and MLC1, form a functional unit, and thus, that loss-of-function mutations in these genes cause leukodystrophy through a common pathway.
Funder
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Generalitat de Catalunya
Instituto de Salud Carlos III
ICREA
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Genetics(clinical),General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献