Identification of immune-infiltrated hub genes as potential biomarkers of Moyamoya disease by bioinformatics analysis

Author:

Jin Fa,Duan ChuanzhiORCID

Abstract

Abstract Background Moyamoya disease (MMD) is a rare chronic progressive cerebrovascular disease. Recent studies have shown that autoimmune inflammation may also be an important pathology in MMD but the molecular mechanisms of inflammation in this disease are still large unknown. This study was designed to identify key biomarkers and the immune infiltration in vessel tissue of MMD using bioinformatics analysis. Methods Raw gene expression profiles (GSE157628, GSE141024) were downloaded from the Gene Expression Omnibus (GEO) database, identified differentially expressed genes (DEGs) and performed functional enrichment analysis. The CIBERSORT deconvolution algorithm was used to analyze the proportion of immune cells between MMD and an MMD-negative control group. We screened for neutrophil-associated DEGs, constructed a protein–protein interaction network (PPI) using STRING, and clarified the gene cluster using the Cytoscape plugin MCODE analysis. The receiver operating characteristic (ROC) curve was applied to test and filter the best gene signature. Results A total of 570 DEGs were detected, including 212 downregulated and 358 up-regulated genes. Reactome and KEGG enrichment revealed that DEGs were involved in the cell cycle, molecular transport, and metabolic pathways. The immune infiltration profile demonstrated that MMD cerebrovascular tissues contained a higher proportion of neutrophils, monocytes, and natural killer cells in MMD than in controls. The PPI network and MCODE cluster identified nine DEGs (UNC13D, AZU1, PYCARD, ELANE, SDCBP, CCL11, CCL15, CCL20, and CXCL5) associated with neutrophil infiltration. ROC results showed that UNC13D has good specificity and sensitivity (AUC = 0.7846). Conclusions The characteristics of immune infiltration in the cerebrovascular tissues of MMD patients and abnormal expression of hub genes provide new insights for understanding MMD progression. UNC13D is shows promise as a candidate molecule to determine neutrophil infiltration characteristics in MMD.

Funder

Key Project of Clinical Research of Southern Medical University

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3