Abstract
Abstract
Background
Barth syndrome (BTHS) is a rare genetic disease that is characterized by cardiomyopathy, skeletal myopathy, neutropenia, and growth abnormalities and often leads to death in childhood. Recently, elamipretide has been tested as a potential first disease-modifying drug. This study aimed to identify patients with BTHS who may respond to elamipretide, based on continuous physiological measurements acquired through wearable devices.
Results
Data from a randomized, double-blind, placebo-controlled crossover trial of 12 patients with BTHS were used, including physiological time series data measured using a wearable device (heart rate, respiratory rate, activity, and posture) and functional scores. The latter included the 6-minute walk test (6MWT), Patient-Reported Outcomes Measurement Information System (PROMIS) fatigue score, SWAY Balance Mobile Application score (SWAY balance score), BTHS Symptom Assessment (BTHS-SA) Total Fatigue score, muscle strength by handheld dynamometry, 5 times sit-and-stand test (5XSST), and monolysocardiolipin to cardiolipin ratio (MLCL:CL). Groups were created through median split of the functional scores into “highest score” and “lowest score”, and “best response to elamipretide” and “worst response to elamipretide”. Agglomerative hierarchical clustering (AHC) models were implemented to assess whether physiological data could classify patients according to functional status and distinguish non-responders from responders to elamipretide. AHC models clustered patients according to their functional status with accuracies of 60–93%, with the greatest accuracies for 6MWT (93%), PROMIS (87%), and SWAY balance score (80%). Another set of AHC models clustered patients with respect to their response to treatment with elamipretide with perfect accuracy (all 100%).
Conclusions
In this proof-of-concept study, we demonstrated that continuously acquired physiological measurements from wearable devices can be used to predict functional status and response to treatment among patients with BTHS.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Genetics (clinical),General Medicine
Reference24 articles.
1. Clarke SL, Bowron A, Gonzalez IL, Groves SJ, Newbury-Ecob R, Clayton N, Martin RP, Tsai-Goodman B, Garratt V, Ashworth M, Bowen VM, McCurdy KR, Damin MK, Spencer CT, Toth MJ, Kelley RI, Steward CG. Barth syndrome. Orphanet J Rare Dis. 2013;8:23.
2. Ades LC, Gedeon AK, Wilson MJ, Latham M, Partington MW, Mulley JC, Nelson J, Lui K, Sillence DO. Barth syndrome: clinical features and confirmation of gene localisation to distal Xq28. Am J Med Genet. 1993;45(3):327–34.
3. Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D. A novel X-linked gene, G4.5. Is responsible for Barth syndrome. Nat Genet. 1996;12(4):385–9.
4. Xu Y, Malhotra A, Ren M, Schlame M. The enzymatic function of tafazzin. J Biol Chem. 2006;281(51):39217–24.
5. Saric A, Andreau K, Armand AS, Moller IM, Petit PX. Barth Syndrome: from mitochondrial Dysfunctions Associated with aberrant production of reactive oxygen species to pluripotent stem cell studies. Front Genet. 2015;6:359.