Identifying responders to elamipretide in Barth syndrome: Hierarchical clustering for time series data

Author:

Van den Eynde Jef,Chinni Bhargava,Vernon Hilary,Thompson W. Reid,Hornby Brittany,Kutty Shelby,Manlhiot CedricORCID

Abstract

Abstract Background Barth syndrome (BTHS) is a rare genetic disease that is characterized by cardiomyopathy, skeletal myopathy, neutropenia, and growth abnormalities and often leads to death in childhood. Recently, elamipretide has been tested as a potential first disease-modifying drug. This study aimed to identify patients with BTHS who may respond to elamipretide, based on continuous physiological measurements acquired through wearable devices. Results Data from a randomized, double-blind, placebo-controlled crossover trial of 12 patients with BTHS were used, including physiological time series data measured using a wearable device (heart rate, respiratory rate, activity, and posture) and functional scores. The latter included the 6-minute walk test (6MWT), Patient-Reported Outcomes Measurement Information System (PROMIS) fatigue score, SWAY Balance Mobile Application score (SWAY balance score), BTHS Symptom Assessment (BTHS-SA) Total Fatigue score, muscle strength by handheld dynamometry, 5 times sit-and-stand test (5XSST), and monolysocardiolipin to cardiolipin ratio (MLCL:CL). Groups were created through median split of the functional scores into “highest score” and “lowest score”, and “best response to elamipretide” and “worst response to elamipretide”. Agglomerative hierarchical clustering (AHC) models were implemented to assess whether physiological data could classify patients according to functional status and distinguish non-responders from responders to elamipretide. AHC models clustered patients according to their functional status with accuracies of 60–93%, with the greatest accuracies for 6MWT (93%), PROMIS (87%), and SWAY balance score (80%). Another set of AHC models clustered patients with respect to their response to treatment with elamipretide with perfect accuracy (all 100%). Conclusions In this proof-of-concept study, we demonstrated that continuously acquired physiological measurements from wearable devices can be used to predict functional status and response to treatment among patients with BTHS.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics (clinical),General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3