Genetic profiling and cardiovascular phenotypic spectrum in a Chinese cohort of Loeys-Dietz syndrome patients

Author:

Yang Hang,Ma Yanyun,Luo Mingyao,Zhu Guoyan,Zhang Yinhui,Li Binbin,Shu Chang,Zhou ZhouORCID

Abstract

Abstract Background Loeys-Dietz syndrome (LDS) is a rare connective tissue disorder for which 6 genes in the TGF-β pathway have been identified as causative. With the widespread use of genetic testing, the range of known clinical and genetic profiles has broadened, but these features have not been fully elucidated thus far. Methods and results Using gene panel sequencing or whole exome sequencing, we identified 54 unique rare variants in LDS genes in 57 patients with thoracic aneurysms/dissections, including 27 pathogenic mutations (P + LP) and 27 variants of unknown significance (VUSLP + VUS). Genotype-phenotype correlation analysis revealed that carriers with P/LP/ VUSLP variants in TGFBR1/TGFBR2/SMAD3 genes had significantly more severe cardiovascular features (cardiovascular death/dissection) than carriers with VUSs in these 3 genes at an early age and had less favorable event-free survival. Additionally, carriers with VUS in combination with other risk factors, such as hypertension, might be prone to developing an aortic dissection, as indicated by the fact that 5/8 (62.5%) patients with VUSs in our cohort developed aortic dissections in the presence of hypertension, compared with 25.0% (3/12) in the absence of hypertension (p = 0.047). Conclusions To date, this was the largest cohort of LDS patients ever reported in China, and the present study expanded the known mutation and phenotypic spectra of LDS, which might help refine our knowledge of LDS.

Funder

Grant of the National Natural Science Foundation of China

Grant of CAMS Initiative for Innovative Medicine

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Genetics (clinical),General Medicine

Reference22 articles.

1. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81.

2. Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology,American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons,and Society for Vascular Medicine. J Am Coll Cardiol. 2010;55(14):e27–e129.

3. van de Laar IM, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JM, et al. Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet. 2011;43(2):121–6.

4. Lindsay ME, Schepers D, Bolar NA, Doyle JJ, Gallo E, Fert-Bober J, et al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat Genet. 2012;44(8):922–7.

5. Boileau C, Guo DC, Hanna N, Regalado ES, Detaint D, Gong L, et al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet. 2012;44(8):916–21.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3