Bitrate control using a heuristic spatial resolution adjustment for a real-time H.264/AVC encoder

Author:

Rhee Chae Eun,Kim Jin-Sung,Lee Hyuk-Jae

Abstract

Abstract Conventional bitrate control algorithms that change only the quantization parameter (QP) often suffer from quality degradation when the target bitrate is very low. Therefore, rate control algorithms that adjust spatial resolution in addition to QP control have recently been proposed, but their computations are too complex to be processed in real time. This research proposes a very simple, but effective, rate control algorithm that employs spatial resolution control as well as the existing QP-based bitrate control. The spatial resolution ratio for the best peak signal-to-noise ratio (PSNR) is calculated using a simple estimation model which defines the relationship between the PSNR and the spatial resolution at very low bitrate compression. In the proposed bitrate control algorithm, two scalability tools for adjusting the QP and the spatial resolution ratio are used sequentially to reach the target PSNR and the control decision is made for a group of pictures. Experimental results show that the proposed bitrate control algorithm approximates an optimal solution and yields a better subjective quality as well as objective quality at various bitrates compared to the conventional QP-based bitrate control algorithm. The decision of the control parameters requires very small computational complexity and is made in a completely automatic manner so that the proposed algorithm is well suited for real-time applications.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scaling-based energy-quality multilevel control for aerial imagery;Optoelectronics Letters;2018-09

2. Adaptive Bitrate Selection for Video Encoding with Reduced Block Artifacts;Proceedings of the 24th ACM international conference on Multimedia;2016-10

3. Adaptive Downsampling Video Coding With Spatially Scalable Rate-Distortion Modeling;IEEE Transactions on Circuits and Systems for Video Technology;2014-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3