Spatial location priors for Gaussian model based reverberant audio source separation

Author:

Duong Ngoc Q K,Vincent Emmanuel,Gribonval Rémi

Abstract

Abstract We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.

Publisher

Springer Science and Business Media LLC

Reference40 articles.

1. O’Grady P, Pearlmutter B, Rickard ST: Survey of sparse and non-sparse methods in source separation. Int. J. Imaging Syst. Technol 2005, 15: 18-33. 10.1002/ima.20035

2. Makino S, Lee TW, Sawada H: Blind Speech Separation. Berlin: Springer; 2007.

3. Vincent E, Jafari MG, Abdallah SA, Plumbley MD, Davies ME: Probabilistic modeling paradigms for audio source separation. In Machine Audition: Principles, Algorithms and Systems. Hershey: IGI Global; 2010:162-185.

4. Smaragdis P: Blind separation of convolved mixtures in the frequency domain. Neurocomputing 1998, 22: 21-34. 10.1016/S0925-2312(98)00047-2

5. Sawada H, Araki S, Makino S: Frequency-domain blind source separation. In Blind Speech Separation. Berlin: Springer; 2007:47-78.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reverberant Source Separation Using NTF With Delayed Subsources and Spatial Priors;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

2. On Ambisonic Source Separation With Spatially Informed Non-Negative Tensor Factorization;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024

3. Wishart Localization Prior On Spatial Covariance Matrix In Ambisonic Source Separation Using Non-Negative Tensor Factorization;ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2022-05-23

4. Incorporation of Localization Information for Sound Source Separation in Spherical Harmonic Domain;2021 IEEE 23rd International Workshop on Multimedia Signal Processing (MMSP);2021-10-06

5. Maximum a Posteriori Estimator for Convolutive Sound Source Separation with Sub-Source Based NTF Model and the Localization Probabilistic Prior on the Mixing Matrix;ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2021-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3