Methods for depth-map filtering in view-plus-depth 3D video representation

Author:

Smirnov Sergey,Gotchev Atanas,Egiazarian Karen

Abstract

Abstract View-plus-depth is a scene representation format where each pixel of a color image or video frame is augmented by per-pixel depth represented as gray-scale image (map). In the representation, the quality of the depth map plays a crucial role as it determines the quality of the rendered views. Among the artifacts in the received depth map, the compression artifacts are usually most pronounced and considered most annoying. In this article, we study the problem of post-processing of depth maps degraded by improper estimation or by block-transform-based compression. A number of post-filtering methods are studied, modified and compared for their applicability to the task of depth map restoration and post-filtering. The methods range from simple and trivial Gaussian smoothing, to in-loop deblocking filter standardized in H.264 video coding standard, to more comprehensive methods which utilize structural and color information from the accompanying color image frame. The latter group contains our modification of the powerful local polynomial approximation, the popular bilateral filter, and an extension of it, originally suggested for depth super-resolution. We further modify this latter approach by developing an efficient implementation of it. We present experimental results demonstrating high-quality filtered depth maps and offering practitioners options for highest-quality or better efficiency.

Publisher

Springer Science and Business Media LLC

Reference25 articles.

1. Mueller K, Merkle P, Wiegand T: 3-D video representation using depth maps. Proc IEEE 2011, 99(4):643-656.

2. Fehn C: Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. In Proceedings of SPIE Stereoscopic Displays and Virtual Reality Systems XI. Volume 5291. San Jose, CA, USA; 2004:93-104. SPIE

3. Vetro A, Yea S, Smolic A: Towards a 3D video format for auto-stereoscopic displays. In SPIE Conference on Applications of Digital Image Processing XXXI. Volume 7073. San Diego, CA, USA; 2008:70730F. SPIE

4. Kang S, Szeliski R, Chai J: Handling occlusions in dense multi-view stereo. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2001). Volume 1. IEEE Computer Society, Kauai, HI, USA; 2001:103-110.

5. Qingxiong Y, Ruigang Y, Davis J, Nister D: Spatial-depth super resolution for range images. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007). IEEE Computer Society, Minneapolis, MN; 2007:1-8.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3