Systematic design of transmitter and receiver architectures for flexible filter bank multi-carrier signals

Author:

Gutiérrez Esteban,López-Salcedo José A,Seco-Granados Gonzalo

Abstract

Abstract Multi-carrier (MC) signaling is currently in the forefront of a myriad of systems, either wired or wireless, due to its high spectral efficiency, simple equalization, and robustness in front of multipath and narrowband interference sources. Despite its widespread deployment, the design of efficient architectures for MC systems becomes a challenging task when adopting filter bank multi-carrier (FBMC) modulation due to the inclusion of band-limited shaping pulses into the signal model. The reason to employ these pulses is the numerous improvements they offer in terms of performance, such as providing higher spectral confinement and no frequency overlap between adjacent subcarriers. These attributes lead to a reduced out-of-band power emission and a higher effective throughput. The latter is indeed possible by removing the need of cyclic prefix, which is in charge of preserving orthogonality among subcarriers in conventional MC systems. Nevertheless, the potential benefits of FBMC modulations are often obscured when it comes to an implementation point of view. In order to circumvent this limitation, the present paper provides a unified framework to describe all FBMC signals in which both signal design and implementation criteria are explicitly combined. In addition to this, we introduce the concept of flexible FBMC signals that, unlike their traditional MC counterparts, do not impose restrictions on the signal parameters (i.e., symbol rate, carrier spacing, or sampling frequency). Moreover, our framework also proposes a methodology that overcomes the implementation issues that characterize FBMC systems and allows us to derive simple, efficient, and time-invariant transmitter and receiver architectures.

Publisher

Springer Science and Business Media LLC

Reference56 articles.

1. Cendrillon R, Collings I, Nordstrom T, Sjoberg F, Tsatsanis M, Yu W: Advanced signal processing for digital subscriber lines. EURASIP J. Adv. Signal Process 2006, 1-3.

2. Gerakoulis D: Multicarrier access and routing for wireless networking. EURASIP J. Wirel. Commun. Netw 2005, 599-606.

3. Dai L, Wang Z, Pan C, Chen S: Wireless positioning using TDS-OFDM signals in single-frequency networks. IEEE Trans. Broadcast 2012, 58(2):236-246.

4. Wang D, Fattouche M, Ghannouchi FM: Multicarrier code for the next-generation GPS. EURASIP J. Wirel. Commun. Netw 2012, 1-22.

5. Jallon P: An algorithm for detection of DVB-T signals based on their second-order statistics. EURASIP J. Wirel. Commun. Netw 2008, 1-9.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3