Author:
Bin Saeed Muhammad O,Zerguine Azzedine,Zummo Salam A
Abstract
Abstract
Until recently, a lot of work has been done to develop algorithms that utilize the distributed structure of an ad hoc wireless sensor network to estimate a certain parameter of interest. However, all these algorithms assume that the input regressor data is available to the sensors, but this data is not always available to the sensors. In such cases, blind estimation of the required parameter is needed. This work formulates two newly developed blind block-recursive algorithms based on singular value decomposition (SVD) and Cholesky factorization-based techniques. These adaptive algorithms are then used for blind estimation in a wireless sensor network using diffusion of data among cooperative sensors. Simulation results show that the performance greatly improves over the case where no cooperation among sensors is involved.
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Sayed AH, Lopes CG: Distributed recursive least-squares strategies over adaptive networks. In Proceedings of the 40th Asilomar Conference on Signals, Systems, Computers. Monterey, CA; 2006:233-237.
2. Lopes CG, Sayed AH: Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process 2007, 55: 4064-4077.
3. Lopes CG, Sayed AH: Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process 2008, 56(7):3122-3136.
4. Schizas ID, Mateos G, Giannakis GB: Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process 2009, 57(6):2365-2382.
5. Bin Saeed MO, Zerguine A, Zummo SA: A variable step-size strategy for distributed estimation over distributed networks. Eur. J. Adv. Signal Process 2013, 2013: 135. 10.1186/1687-6180-2013-135