Biologically-inspired data decorrelation for hyper-spectral imaging

Author:

Picon Artzai,Ghita Ovidiu,Rodriguez-Vaamonde Sergio,Iriondo Pedro Ma,Whelan Paul F

Abstract

Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors) is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA), linear discriminant analysis (LDA), wavelet decomposition (WD), or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral) characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

Publisher

Springer Science and Business Media LLC

Reference34 articles.

1. Grahn H, Geladi P, (eds): Techniques and Applications of Hyperspectral Image Analysis. Wiley, Chichester; 2007.

2. Wahab DA, Hussain A, Scavino E, Mustafa M, Basri H: Development of a prototype automated sorting system for plastic recycling. Am J Appl Sci 2006, 3: 1924-1928.

3. Chang CI: Hyperspectral Imaging: Techniques for Spectral Detection and Classification. Kluwer Academic Publishers Group, New York; 2003. ISBN:0-306-47483-5

4. Tso B, Olsen RC: Scene Classification Using Combined Spectral, Textural and Contextual Information. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X (SPIE) 2004.

5. Specim Spectral Imaging Ltd[http://www.specim.fi/]

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3