Multispectral texture characterization: application to computer aided diagnosis on prostatic tissue images

Author:

Khelifi Riad,Adel Mouloud,Bourennane Salah

Abstract

AbstractVarious approaches have been proposed in the literature for texture characterization of images. Some of them are based on statistical properties, others on fractal measures and some more on multi-resolution analysis. Basically, these approaches have been applied on mono-band images. However, most of them have been extended by including the additional information between spectral bands to deal with multi-band texture images. In this article, we investigate the problem of texture characterization for multi-band images. Therefore, we aim to add spectral information to classical texture analysis methods that only treat gray-level spatial variations. To achieve this goal, we propose a spatial and spectral gray level dependence method (SSGLDM) in order to extend the concept of gray level co-occurrence matrix (GLCM) by assuming the presence of texture joint information between spectral bands. Thus, we propose new multi-dimensional functions for estimating the second-order joint conditional probability density of spectral vectors. Theses functions can be represented in structure form which can help us to compute the occurrences while keeping the corresponding components of spectral vectors. In addition, new texture features measurements related to (SSGLDM) which define the multi-spectral image properties are proposed. Extensive experiments have been carried out on 624 textured multi-spectral images for use in prostate cancer diagnosis and quantitative results showed the efficiency of this method compared to the GLCM. The results indicate a significant improvement in terms of global accuracy rate. Thus, the proposed approach can provide clinically useful information for discriminating pathological tissue from healthy tissue.

Publisher

Springer Science and Business Media LLC

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3