Contribution of statistical tests to sparseness-based blind source separation

Author:

Aziz-Sbaï Si Mohamed,Aïssa-El-Bey Abdeldjalil,Pastor Dominique

Abstract

Abstract We address the problem of blind source separation in the underdetermined mixture case. Two statistical tests are proposed to reduce the number of empirical parameters involved in standard sparseness-based underdetermined blind source separation (UBSS) methods. The first test performs multisource selection of the suitable time–frequency points for source recovery and is full automatic. The second one is dedicated to autosource selection for mixing matrix estimation and requires fixing two parameters only, regardless of the instrumented SNRs. We experimentally show that the use of these tests incurs no performance loss and even improves the performance of standard weak-sparseness UBSS approaches.

Publisher

Springer Science and Business Media LLC

Reference39 articles.

1. Varajarajan V, Krolik J,: Multichannel system identification methods for sensor array calibration in uncertain multipath environments. IEEE Signal Processing Workshop on Statistical Signal Processing (SSP) (Singapore, Oct 2001), pp. 297–300

2. Rouxel A, Guennec DL, Macchi O: Unsupervised adaptive separation of impulse signals applied to EEG analysis. IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), vol. 1 (Istanbul, Turkey, June 2000), pp. 420–423

3. Abed-Meraim K, Attallah S, Lim T, Damen M: A blind interference canceller in DS-CDMA. IEEE International Symposium on Spread Spectrum Techniques and Applications (Parsippany, Sept 2000), pp. 358–362

4. Durán-Díaz I, Cruces-Alvarez SA: A joint optimization criterion for blind DS-CDMA detection. EURASIP J. Adv. Signal Process 2007, 2007(79248):1-11.

5. Aïssa-El-Bey A, Abed-Meraim K, Grenier Y: Underdetermined blind audio source separation using modal decomposition. EURASIP J. Audio Speech Music Process 2007, 2007(85438):1-15.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3