An approach to performance assessment and fault diagnosis for rotating machinery equipment

Author:

Tao Xiaochuang,Lu Chen,Lu Chuan,Wang Zili

Abstract

Abstract Predict and prevent maintenance is routinely carried out. However, how to address the problem of performance assessment maximizing the use of available monitoring data, and how to build a framework that integrates performance assessment, fault detection, and diagnosis are still a significant challenge. For this purpose, this article introduces an approach to performance assessment and fault diagnosis for rotating machinery, including wavelet packet decomposition for extracting energy feature samples from vibration signals acquired during normal and faulty conditions; clustering analysis for demonstrating the separability of the samples; and Fisher discriminant analysis for providing an optimal lower-dimensional representation, in terms of maximizing the separability among different populations, by projecting the samples into a new space. In the new low-dimensional space, the Mahalanobis distance (MD) between the new measurement data and normal population can be calculated for performance assessment. Moreover, this model for performance assessment only requires data to be available in normal conditions and any one of all possible fault conditions, without the necessity for the full life cycle of condition monitoring data. In addition, if monitoring data under different fault conditions are available, the fault mode can be identified accurately by comparing the MDs between the new measurement data and each fault population. Finally, the proposed method was verified to be successful on performance assessment and fault diagnosis via a hydraulic pump test and a ball bearing test.

Publisher

Springer Science and Business Media LLC

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3