Subspace weighted ℓ2,1 minimization for sparse signal recovery

Author:

Zheng Chundi,Li Gang,Liu Yimin,Wang Xiqin

Abstract

Abstract In this article, we propose a weighted 2,1 minimization algorithm for jointly-sparse signal recovery problem. The proposed algorithm exploits the relationship between the noise subspace and the overcomplete basis matrix for designing weights, i.e., large weights are appointed to the entries, whose indices are more likely to be outside of the row support of the jointly sparse signals, so that their indices are expelled from the row support in the solution, and small weights are appointed to the entries, whose indices correspond to the row support of the jointly sparse signals, so that the solution prefers to reserve their indices. Compared with the regular 2,1 minimization, the proposed algorithm can not only further enhance the sparseness of the solution but also reduce the requirements on both the number of snapshots and the signal-to-noise ratio (SNR) for stable recovery. Both simulations and experiments on real data demonstrate that the proposed algorithm outperforms the 1-SVD algorithm, which exploits straightforwardly 2,1 minimization, for both deterministic basis matrix and random basis matrix.

Publisher

Springer Science and Business Media LLC

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3