Abstract
Abstract
Background
Disability-Adjusted Life Years (DALYs) are an established method for quantifying population health needs and guiding prioritisation decisions. Global Burden of Disease (GBD) estimates aim to ensure comparability between countries and over time by using age-standardised rates (ASR) to account for differences in the age structure of different populations. Different standard populations are used for this purpose but it is not widely appreciated that the choice of standard may affect not only the resulting rates but also the rankings of causes of DALYs. We aimed to evaluate the impact of the choice of standard, using the example of Scotland.
Methods
DALY estimates were derived from the 2016 Scottish Burden of Disease (SBoD) study for an abridged list of 68 causes of disease/injury, representing a three-year annual average across 2014–16. Crude DALY rates were calculated using Scottish national population estimates. DALY ASRs standardised using the GBD World Standard Population (GBD WSP) were compared to those using the 2013 European Standard Population (ESP2013). Differences in ASR and in rank order within the cause list were summarised for all-cause and for each individual cause.
Results
The ranking of causes by DALYs were similar using crude rates or ASR (ESP2013). All-cause DALY rates using ASR (GBD WSP) were around 26% lower. Overall 58 out of 68 causes had a lower ASR using GBD WSP compared with ESP2013, with the largest falls occurring for leading causes of mortality observed in older ages. Gains in ASR were much smaller in absolute scale and largely affected causes that operated early in life. These differences were associated with a substantial change to the ranking of causes when GBD WSP was used compared with ESP2013.
Conclusion
Disease rankings based on DALY ASRs are strongly influenced by the choice of standard population. While GBD WSP offers international comparability, within-country analyses based on DALY ASRs should reflect local age structures. For European countries, including Scotland, ESP2013 may better guide local priority setting by avoiding large disparities occurring between crude and age-standardised results sets, which could potentially confuse non-technical audiences.
Publisher
Springer Science and Business Media LLC
Subject
Public Health, Environmental and Occupational Health
Reference22 articles.
1. Murray CJL, Lopez AD. The Global Burden of Disease: A comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Cambridge, MA: Harvard University Press on behalf of the World Health Organization and the World Bank; 1996.
2. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CLJ. Global Burden of Disease and Risk Factors. Washington (DC): The International Bank for Reconstruction and Development / The World Bank; 2006. Available from: https://www.ncbi.nlm.nih.gov/books/NBK11812/ Co-published by Oxford University Press, New York.
3. Institute for Health Metrics and Evaluation [Internet]. The Global Burden of Disease (GBD). http://www.healthdata.org/gbd. Accessed 27 Sept 2019.
4. Institute for Health Metrics and Evaluation. The global burden of disease: generating evidence, guiding policy. Seattle: IHME; 2013.
5. Rommel A, von der Lippe E, Plaß D, Wengler A, Anton A, Schmidt C, et al. BURDEN 2020—Burden of disease in Germany at the national and regional level. Bundesgesundheitsblatt—Gesundheitsforsch—Gesundheitsschutz. 2018;61(9):1159–66.
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献