Author:
Kim Ju Hyeon,Lee Do Eun,Park SangYoun,Clark John M.,Lee Si Hyeock
Abstract
Abstract
Background
Head louse females secrete liquid glue during oviposition, which is solidified to form the nit sheath over the egg. Recently, two homologous proteins, named louse nit sheath protein (LNSP) 1 and LNSP 2, were identified as adhesive proteins but the precise mechanism of nit sheath solidification is unknown.
Methods
We determined the temporal transcriptome profiles of the head louse accessory glands plus oviduct, from which putative major structural proteins and those with functional importance were deduced. A series of RNA interference (RNAi) experiments and treatment of an inhibitor were conducted to elucidate the function and action mechanism of each component.
Results
By transcriptome profiling of genes expressed in the louse accessory glands plus uterus, the LNSP1 and LNSP2 along with two hypothetical proteins were confirmed to be the major structural proteins. In addition, several proteins with functional importance, including transglutaminase (TG), defensin 1 and defensin 2, were identified. When LNSP1 was knocked down via RNA interference, most eggs became nonviable via desiccation, suggesting its role in desiccation resistance. Knockdown of LNSP2, however, resulted in oviposition failure, which suggests that LNSP2 may serve as the basic platform to form the nit sheath and may have an additional function of lubrication. Knockdown of TG also impaired egg hatching, demonstrating its role in the cross-linking of nit sheath proteins. The role of TG in cross-linking was further confirmed by injecting or hair coating of GGsTop, a TG inhibitor.
Conclusions
Both LNSP1 and LNSP2 are essential for maintaining egg viability besides their function as glue. The TG-mediated cross-linking plays critical roles in water preservation that are essential for ensuring normal embryogenesis. TG-mediated cross-linking mechanism can be employed as a therapeutic target to control human louse eggs, and any topically applied TG inhibitors can be exploited as potential ovicidal agents.
Graphical abstract
Funder
National Institutes of Health/National Institute
Brain Korea 21 Plus program
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference20 articles.
1. Resh VH, Cardé RT. Encyclopedia of insects. Cambridge: Academic Press; 2009.
2. Hilker M, Meiners T. Chemoecology of insect eggs and egg deposition. New Jersey: Wiley; 2008.
3. Clark JM. Determination, mechanism and monitoring of knockdown resistance in permethrin-resistant human head lice, Pediculus humanus capitis. J Asia-Pacif Entomol. 2009;12(1):1–7.
4. Ferris GF. The sucking lice. Mem Pacif Coast ent Soc 1951.
5. Carter DG. Insect egg glue: an investigation of the nature and secretion of insect egg glues, with special reference to the human louse, Pediculus humanus and the cabbage white butterfly, Pieris brassicae. Cambridge: University of Cambridge; 1990.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献