Author:
Fei Xiaowen,Zhang Yang,Ding Lili,Xiao Sha,Xie Xiaoqing,Li Yajun,Deng Xiaodong
Abstract
Abstract
Background
Mosquito-borne diseases affect over half of the human population globally. Multiple studies have shown that chemical insecticides are ineffective because of resistance. Therefore, environmentally safe mosquito population control tools need to be developed. Ribonucleic acid interference (RNAi) is a reverse genetic mechanism recently introduced as a new pest control tool. This technique represents a new class of biorational technology that could combat the increased global incidence of insecticide resistance. The technique has the potential of becoming a critical component of integrated vector control programs.
Methods
A 3-hydroxykynurenine transaminase (3-HKT) RNAi expression plasmid was constructed, generated and transformed into Chlamydomonas and Chlorella algae. The transgenic algae were then used to feed Ae. aegypti mosquito larvae. The feeding experiments were conducted on a small and large scale with 10 and about 300 larvae, respectively. The mortality rate of the larvae was calculated over 30 days. In addition, histological examination of the insect tissues was performed to examine the extent of tissue damage.
Results
The integumentary system and midguts of larvae fed with transgenic Chlamydomonas were severely damaged. The mortality rate of the larvae fed with transgenic Chlamydomonas ranged from 60 to 100% in small-scale tests. The survival rate of adult mosquitoes was 0.0% in a large-scale feeding experiment when the larvae were fed with transgenic Chlamydomonas. Moreover, when the larvae were fed with transgenic Chlorella, the mortality rate ranged from 6.7% to 43% compared to that fed wild-type Chlorella.
Conclusions
3HKT RNAi transgenic algae are in some scales lethal to Ae. aegypti. The findings of this study indicate that technology based on microalgae RNAi may provide a new way to control mosquito populations.
Graphical Abstract
Funder
the National Natural Science Foundation of China
Key Research and Development Project of Hainan Province
Financial Fund of the Ministry of Agriculture and Rural Affairs, P.R.China
Special fund for basic scientific research business of the Chinese Academy of Tropical Agricultural Sciences
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Parasitology
Reference56 articles.
1. Fan J, Lin H, Wang C, Bai L, Yang S, Chu C, et al. Identifying the high-risk areas and associated meteorological factors of dengue transmission in Guangdong Province, China from 2005 to 2011. Epidemiol Infect. 2014;142:634–43.
2. Shen JC, Luo L, Li L, Jing QL, Ou CQ, Yang ZC, et al. The impacts of mosquito density and meteorological factors on dengue fever epidemics in Guangzhou, China, 2006–2014: a time-series analysis. Biomed Environ Sci. 2015;28:321–9.
3. World health organization. Dengue and severe dengue. https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue. Accessed 23 June 2020.
4. Petersen LR, Jamieson DJ, Powers AM, Honein MA. Zika virus. N Engl J Med. 2016;374:1552–63.
5. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika virus and birth d effects-reviewing the evidence for causality. N Engl J Med. 2016;374:1981–7.
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献